

Final Site Inspections Report of Fire Fighting Foam Usage at Vermont Air National Guard Burlington Air National Guard Base Chittenden County, Vermont

January 2018

Submitted to: Air Force Civil Engineer Center 3515 General McMullen Suite 155 San Antonio, Texas 78226-2018

Submitted by: U.S. Army Corps of Engineers Savannah District 100 W. Oglethorpe Avenue Savannah, Georgia 31401-3640

Prepared by: Aerostar SES LLC 1006 Floyd Culler Court Oak Ridge, Tennessee 37830-8022 under Contract No. W912HN-15-C-0022

Final Site Inspections Report of Fire Fighting Foam Usage at Vermont Air National Guard Burlington Air National Guard Base Chittenden County, Vermont

January 2018

Submitted to: Air Force Civil Engineer Center 3515 General McMullen Suite 155 San Antonio, Texas 78226-2018

Submitted by: U.S. Army Corps of Engineers Savannah District 100 West Oglethorpe Avenue Savannah, Georgia 31401-3640

Prepared by: Aerostar SES LLC 1006 Floyd Culler Court Oak Ridge, Tennessee 37830 under Contract No. W912HN-15-C-0022

Acronyms and Abbreviations vii 1.0 INTRODUCTION 1 2.0 AREA DESCRIPTIONS 2 2.1 FORMER FIRE TRAINING AREA 1 [INSTALLATION RESTORATION PROGRAM SITE 1) – 5 2.2 BUILDING 90 FORMER FIRE STATION – AFFF AREA 2 6 2.3 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 3 6 2.4 FIRE DEPARGENCY RESTOTION – AFFF AREA 3 6 2.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5 7 3.0 FIELD ACTIVITIES AND FINDINGS 7 3.1 FORMER FIRE TRAINING AREA 1 (INSTALLATION RESTORATION PROGRAM SITE 1) – AFFF AREA 1 3.1.1 Sample Locations 8 3.1.1 3.1.2 Lithology. 9 3.1.3 Groundwater Flow 9 3.1.4 Analytical Results 9 3.1.5 Conclusions 13 3.2.1 Sample Locations 13 3.2.1 Sample Locations 13 3.2.2 Lithology. 13 3.2.1 Sample Locations 13 3.2.3 Groundwater Flow 13 3.2.3 Groundwater Flow 13 3.2.3				Page
2.0 AREA DESCRIPTIONS 2 2.1 FORMER FIRE TRAINING AREA 1 (INSTALLATION RESTORATION PROGRAM SITE 1) – AFFF AREA 1 AFFF AREA 1	Acro	onyms	and Abbreviations	V11
2.1 FORMER FIRE TRAINING AREA 1 (INSTALLATION RESTORATION PROGRAM SITE 1) – AFFF AREA 1	1.0	INTF	ODUCTION	1
2.1 FORMER FIRE TRAINING AREA 1 (INSTALLATION RESTORATION PROGRAM SITE 1) – AFFF AREA 1	2.0	ADE	A DESCRIPTIONS	2
AFFF AREA 1 5 2.2 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 2 6 2.3 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 3 6 2.4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4 6 2.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5 7 3.0 FIELD ACTIVITIES AND FINDINGS 7 3.1 FORMER FIRE TRAINING AREA 1 (INSTALLATION RESTORATION PROGRAM SITE I) – 7 AFFF AREA 1 8 3.1.1 Sample Locations 8 3.1.2 Lithology 9 9 3.1.3 Groundwater Flow 9 3.1.3 Groundwater Flow 9 9 3.1.4 Analytical Results 9 3.1.2 Suthology 9 3.1.3 Groundwater Flow 9 3.2.1 Sample Locations 12 13 3.2.1 Sample Locations 13 3.2.2 Lithology 13 3.2.3 Groundwater Flow 13 3.2.3 Groundwater Flow 13 3.2.4 Analytical Results 13 3.2.4 Analytical Results 17 3.3.3 17				
2.2 BUILDING 90 FORMER FIRE STATION – AFFF AREA 2	2.			
2.3 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 3.	2.			
2.4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4				
2.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5	2.			
3.1 FORMER FIRE TRAINING AREA 1 (INSTALLATION RESTORATION PROGRAM SITE 1) – AFFF AREA 1	2.			
3.1 FORMER FIRE TRAINING AREA 1 (INSTALLATION RESTORATION PROGRAM SITE 1) – AFFF AREA 1	3.0	FIFI	D ACTIVITIES AND FINDINGS	7
AFFF AREA 1. 8 3.1.1 Sample Locations 8 3.1.2 Lithology. 9 3.1.3 Groundwater Flow 9 3.1.4 Analytical Results. 9 3.1.5 Conclusions 12 3.2 BUILDING 90 FORMER FIRE STATION – AFFF AREA 2. 13 3.2.1 Sample Locations 13 3.2.2 Lithology. 13 3.2.3 Groundwater Flow 13 3.2.4 Analytical Results. 13 3.2.5 Conclusions 16 3.3 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 3. 17 3.3.1 Sample Locations 17 3.3.2 Lithology. 17 3.3.3 Groundwater Flow 17 3.3.4 Analytical Results. 17 3.3.5 Conclusions 17 3.3.6 Groundwater Flow 17 3.3.7 Groundwater Flow 17 3.3.8 Groundwater Flow 20 3.4.4 Sample Locations 20 3.4.1 Sample Loca				·••• /
3.1.1 Sample Locations	5.			8
3.1.2 Lithology				
3.1.3 Groundwater Flow 9 3.1.4 Analytical Results 9 3.1.5 Conclusions 12 3.2 BUILDING 90 FORMER FIRE STATION – AFFF AREA 2 13 3.2.1 Sample Locations 13 3.2.2 Lithology 13 3.2.3 Groundwater Flow 13 3.2.4 Analytical Results 13 3.2.5 Conclusions 16 3.8 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 3 17 3.3.1 Sample Locations 16 3.3 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 3 17 3.3.1 Sample Locations 17 3.3.2 Lithology 17 3.3.3 Groundwater Flow 17 3.3.4 Analytical Results 17 3.3.5 Conclusions 20 3.4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4 20 3.4.1 Sample Locations 20 3.4.2 Lithology 21 3.4.3 Groundwater Flow 21 3.4.4 Analytical Results<			1	
3.1.4 Analytical Results 9 3.1.5 Conclusions 12 3.2 BUILDING 90 FORMER FIRE STATION – AFFF AREA 2 13 3.2.1 Sample Locations 13 3.2.2 Lithology 13 3.2.3 Groundwater Flow 13 3.2.4 Analytical Results 13 3.2.5 Conclusions 16 3.3 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 3 17 3.3.1 Sample Locations 17 3.3.2 Lithology 17 3.3.1 Sample Locations 17 3.3.2 Lithology 17 3.3.3 Groundwater Flow 17 3.3.4 Analytical Results 17 3.3.5 Conclusions 20 3.4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4 20 3.4.1 Sample Locations 20 3.4.2 Lithology 21 3.4.3 Groundwater Flow 21 3.4.4 Analytical Results 21 3.4.5 Conclusions 21 <t< td=""><td></td><td>3.1.3</td><td>01</td><td></td></t<>		3.1.3	01	
3.1.5 Conclusions 12 3.2 BUILDING 90 FORMER FIRE STATION – AFFF AREA 2 13 3.2.1 Sample Locations 13 3.2.2 Lithology 13 3.2.3 Groundwater Flow 13 3.2.4 Analytical Results 13 3.2.5 Conclusions 16 3.3 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 3 17 3.3.1 Sample Locations 17 3.3.2 Lithology 17 3.3.3 Groundwater Flow 17 3.3.4 Analytical Results 17 3.3.5 Conclusions 17 3.3.4 Analytical Results 17 3.3.5 Conclusions 20 3.4.1 Sample Locations 20 3.4.2 Lithology 21 3.4.3 Groundwater Flow 21 3.4.4 Analytical Results 21 3.4.3 Groundwater Flow 21 3.4.4 Analytical Results 21 3.4.5 Conclusions 22 3.5.1		3.1.4		
3.2.1 Sample Locations 13 3.2.2 Lithology. 13 3.2.3 Groundwater Flow 13 3.2.4 Analytical Results 13 3.2.5 Conclusions 16 3.3 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 3 17 3.3.1 Sample Locations 17 3.3.2 Lithology. 17 3.3.3 Groundwater Flow 17 3.3.4 Analytical Results 17 3.3.5 Conclusions 17 3.3.6 Groundwater Flow 17 3.3.7 Groundwater Flow 17 3.3.5 Conclusions 20 3.4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4 20 3.4.1 Sample Locations 20 3.4.2 Lithology. 21 3.4.3 Groundwater Flow 21 3.4.4 Analytical Results 21 3.4.5 Conclusions 22 3.5.1 Sample Locations 22 3.5.2 Lithology. 24 3.5.3		3.1.5		
3.2.2 Lithology	3.	2 В	UILDING 90 FORMER FIRE STATION – AFFF AREA 2	13
3.2.3 Groundwater Flow 13 3.2.4 Analytical Results 13 3.2.5 Conclusions 16 3.3 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 3 17 3.3.1 Sample Locations 17 3.3.2 Lithology 17 3.3.3 Groundwater Flow 17 3.3.4 Analytical Results 17 3.3.5 Conclusions 17 3.3.6 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4 20 3.4.4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4 20 3.4.1 Sample Locations 20 3.4.2 Lithology 21 3.4.3 Groundwater Flow 21 3.4.4 Analytical Results 21 3.4.5 Conclusions 22 3.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5 24 3.5.1 Sample Locations 22 3.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5 24 3.5.1 Sample Locations 22 3.5 Groundwater Flow 24 3.		3.2.1	Sample Locations	13
3.2.4 Analytical Results 13 3.2.5 Conclusions 16 3.3 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 3 17 3.3.1 Sample Locations 17 3.3.2 Lithology. 17 3.3.3 Groundwater Flow 17 3.3.4 Analytical Results 17 3.3.5 Conclusions 17 3.3.6 Groundwater Flow 17 3.3.5 Conclusions 20 3.4 Analytical Results 17 3.3.5 Conclusions 20 3.4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4 20 3.4.1 Sample Locations 20 3.4.2 Lithology. 21 3.4.3 Groundwater Flow 21 3.4.4 Analytical Results 21 3.4.5 Conclusions 22 3.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5 24 3.5.1 Sample Locations 24 3.5.2 Lithology. 24 3.5.3 Groundwater Flow 24 <		3.2.2	Lithology	13
3.2.5 Conclusions 16 3.3 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 3 17 3.3.1 Sample Locations 17 3.3.2 Lithology 17 3.3.3 Groundwater Flow 17 3.3.4 Analytical Results 17 3.3.5 Conclusions 20 3.4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4 20 3.4.1 Sample Locations 20 3.4.2 Lithology 21 3.4.3 Groundwater Flow 21 3.4.4 Analytical Results 21 3.4.5 Conclusions 21 3.4.4 Analytical Results 21 3.4.5 Conclusions 22 3.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5 24 3.5.1 Sample Locations 24 3.5.2 Lithology 24 3.5.3 Groundwater Flow 24 3.5.4 Analytical Results 24 3.5.5 Conclusions 24 3.5.4 Analytical Results 24		3.2.3	Groundwater Flow	13
3.3 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 3 17 3.3.1 Sample Locations 17 3.3.2 Lithology 17 3.3.3 Groundwater Flow 17 3.3.4 Analytical Results 17 3.3.5 Conclusions 20 3.4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4 20 3.4.1 Sample Locations 20 3.4.2 Lithology 21 3.4.3 Groundwater Flow 21 3.4.4 Analytical Results 21 3.4.5 Conclusions 22 3.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5 22 3.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5 24 3.5.2 Lithology 24 3.5.3 Groundwater Flow 24 3.5.4 Analytical Results 24 3.5.5 Conclusions 26 3.6 INVESTIGATION-DERIVED WASTE 27 3.6.1 Waste Soil 27 3.6.2 Wastewater 27		3.2.4	Analytical Results	13
3.3.1 Sample Locations 17 3.3.2 Lithology 17 3.3.3 Groundwater Flow 17 3.3.4 Analytical Results 17 3.3.5 Conclusions 20 3.4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4 20 3.4.1 Sample Locations 20 3.4.2 Lithology 21 3.4.3 Groundwater Flow 21 3.4.4 Analytical Results 21 3.4.5 Conclusions 22 3.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5 22 3.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5 24 3.5.1 Sample Locations 24 3.5.2 Lithology 24 3.5.3 Groundwater Flow 24 3.5.4 Analytical Results 24 3.5.5 Conclusions 26 3.6 INVESTIGATION-DERIVED WASTE 27 3.6.1 Waste Soil 27 3.6.2 Wastewater 27				
3.3.2 Lithology	3.			
3.3.3 Groundwater Flow 17 3.3.4 Analytical Results 17 3.3.5 Conclusions 20 3.4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4 20 3.4.1 Sample Locations 20 3.4.2 Lithology 21 3.4.3 Groundwater Flow 21 3.4.4 Analytical Results 21 3.4.5 Conclusions 22 3.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5 24 3.5.1 Sample Locations 24 3.5.2 Lithology 24 3.5.3 Groundwater Flow 24 3.5.4 Analytical Results 24 3.5.2 Lithology 24 3.5.3 Groundwater Flow 24 3.5.4 Analytical Results 24 3.5.5 Conclusions 26 3.6 INVESTIGATION-DERIVED WASTE 27 3.6.1 Waste Soil 27 3.6.2 Wastewater 27		3.3.1	1	
3.3.4 Analytical Results				
3.3.5 Conclusions 20 3.4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4 20 3.4.1 Sample Locations 20 3.4.2 Lithology. 21 3.4.3 Groundwater Flow 21 3.4.4 Analytical Results 21 3.4.5 Conclusions 22 3.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5 24 3.5.1 Sample Locations 24 3.5.2 Lithology. 24 3.5.3 Groundwater Flow 24 3.5.4 Analytical Results 24 3.5.5 Conclusions 24 3.5.4 Analytical Results 24 3.5.5 Conclusions 26 3.6 INVESTIGATION-DERIVED WASTE. 27 3.6.1 Waste Soil. 27 3.6.2 Wastewater. 27				
3.4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4. 20 3.4.1 Sample Locations 20 3.4.2 Lithology. 21 3.4.3 Groundwater Flow 21 3.4.4 Analytical Results 21 3.4.5 Conclusions 22 3.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5 24 3.5.1 Sample Locations 24 3.5.2 Lithology. 24 3.5.3 Groundwater Flow 24 3.5.4 Analytical Results 24 3.5.5 Conclusions 24 3.5.4 Analytical Results 24 3.5.5 Conclusions 26 3.6 INVESTIGATION-DERIVED WASTE 27 3.6.1 Waste Soil 27 3.6.2 Wastewater 27				
3.4.1 Sample Locations 20 3.4.2 Lithology. 21 3.4.3 Groundwater Flow 21 3.4.4 Analytical Results 21 3.4.5 Conclusions 22 3.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5 24 3.5.1 Sample Locations 24 3.5.2 Lithology. 24 3.5.3 Groundwater Flow 24 3.5.4 Analytical Results 24 3.5.5 Conclusions 24 3.5.4 Analytical Results 24 3.5.5 Conclusions 26 3.6 INVESTIGATION-DERIVED WASTE 27 3.6.1 Waste Soil 27 3.6.2 Wastewater 27				
3.4.2 Lithology	3.			
3.4.3 Groundwater Flow 21 3.4.4 Analytical Results 21 3.4.5 Conclusions 22 3.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5 24 3.5.1 Sample Locations 24 3.5.2 Lithology 24 3.5.3 Groundwater Flow 24 3.5.4 Analytical Results 24 3.5.5 Conclusions 24 3.5.4 Analytical Results 24 3.5.5 Conclusions 26 3.6 INVESTIGATION-DERIVED WASTE 27 3.6.1 Waste Soil 27 3.6.2 Wastewater 27			1	
3.4.4 Analytical Results			05	
3.4.5 Conclusions 22 3.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5 24 3.5.1 Sample Locations 24 3.5.2 Lithology 24 3.5.3 Groundwater Flow 24 3.5.4 Analytical Results 24 3.5.5 Conclusions 26 3.6 INVESTIGATION-DERIVED WASTE 27 3.6.1 Waste Soil 27 3.6.2 Wastewater 27				
3.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5 24 3.5.1 Sample Locations 24 3.5.2 Lithology 24 3.5.3 Groundwater Flow 24 3.5.4 Analytical Results 24 3.5.5 Conclusions 26 3.6 INVESTIGATION-DERIVED WASTE 27 3.6.1 Waste Soil 27 3.6.2 Wastewater 27			•	
3.5.1 Sample Locations 24 3.5.2 Lithology. 24 3.5.3 Groundwater Flow 24 3.5.4 Analytical Results 24 3.5.5 Conclusions 26 3.6 INVESTIGATION-DERIVED WASTE 27 3.6.1 Waste Soil 27 3.6.2 Wastewater 27	2			
3.5.2 Lithology	5.			
3.5.3 Groundwater Flow 24 3.5.4 Analytical Results 24 3.5.5 Conclusions 26 3.6 INVESTIGATION-DERIVED WASTE 27 3.6.1 Waste Soil 27 3.6.2 Wastewater 27			•	
3.5.4 Analytical Results				
3.5.5 Conclusions 26 3.6 INVESTIGATION-DERIVED WASTE 27 3.6.1 Waste Soil 27 3.6.2 Wastewater 27				
3.6 INVESTIGATION-DERIVED WASTE				
3.6.1 Waste Soil	3			
<i>3.6.2 Wastewater</i>	5.	-		

Table of Contents

4.0	GROUNDWATER PATHWAY	27
4.1		
	AFFF AREA 1	
4.2		
4.3		
4.4		
4.5	5 F-16 Emergency Response Site – AFFF Area 5	
5.0	SURFACE WATER PATHWAY	
5.1		
	AFFF AREA 1	
5.2		-
5.3		
5.4		
5.5	5 F-16 Emergency Response Site – AFFF Area 5	
6.0	SOIL AND SEDIMENT EXPOSURE AND AIR PATHWAYS	
6.1		
	AFFF AREA 1	
6.2		
6.3		
6.4	4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4	
6.5	5 F-16 Emergency Response Site – AFFF Area 5	
70	UPDATES TO CONCEPTUAL SITE MODELS	33
7.1		
/ • 1	AFFF AREA 1	33
7.2		
7.3		
7.4		
7.5		
0 0	SUMMARY AND CONCLUSIONS	25
0.0 8.1		
0.1	AFFF AREA 1	38
8.2		
8.3		
8.4		
8.5		
9.0	REFERENCES	

List of Tables

Table 1 Regulatory Screening Values	3
Table 2 Aqueous Film Form Foam Areas and Selection Rationale for Site Inspections at Burlington Air	
National Guard Base	4
Table 3 Former Fire Training Area 1 (AFFF Area 1) Subsurface Soil Analytical Results	10
Table 4 Former Fire Training Area 1 (AFFF Area 1) Groundwater Analytical Results	11
Table 5 Former Fire Training Area 1 (AFFF Area 1) Sediment Analytical Results	12
Table 6 Former Fire Training Area 1 (AFFF Area 1) Surface Water Analytical Results	12
Table 7 Building 90 Former Fire Station Location (AFFF Area 2) Surface Soil Analytical Results	14
Table 8 Building 90 Former Fire Station Location (AFFF Area 2) Subsurface Soil Analytical Results	14

Table 9 Building 90 Former Fire Station Location (AFFF Area 2) Groundwater Analytical Results	15
Table 10 Building 90 Former Fire Station Location (AFFF Area 2) Sediment Analytical Results	16
Table 11 Building 90 Former Fire Station Location (AFFF Area 2) Surface Water Analytical Results	16
Table 12 Building 60 Current Fire Station (AFFF Area 3) Surface Soil Analytical Results	18
Table 13 Building 60 Current Fire Station AFFF Area 3 Subsurface Soil Analytical Results	18
Table 14 Building 60 Current Fire Station (AFFF Area 3) Groundwater Analytical Results	19
Table 15 Building 60 Current Fire Station (AFFF Area 3) Sediment Analytical Results	19
Table 16 Building 60 Current Fire Station (AFFF Area 3) Surface Water Analytical Results	20
Table 17 Fire Department Equipment Test Area (AFFF Area 4) Surface Soil Analytical Results	21
Table 18 Fire Department Equipment Test Area (AFFF Area 4) Subsurface Soil Analytical Results	22
Table 19 Fire Department Equipment Test Area (AFFF Area 4) Groundwater Analytical Results	
Table 20 F-16 Emergency Response (AFFF Area 5) Surface Soil Analytical Results	25
Table 21 F-16 Emergency Response (AFFF Area 5) Subsurface Soil Analytical Results	25
Table 22 F-16 Emergency Response (AFFF Area 5) Groundwater Analytical Results	26
Table 23 Summary of Private Wells within Approximately 1 Mile of Burlington ANG Base	28
Table 24 Summary of PFBS, PFOA, and PFOS Detections and Screening Level Exceedances ¹	

List of Appendices

Appendix A Figures
Figure 1 Location of Burlington Air National Guard Base Chittenden County, VermontA-1
Figure 2 AFFF Area Locations
Figure 3 Former FTA 1 (IRP Site 1) – AFFF Area 1 Sample LocationsA-3
Figure 4 Building 90 Former Fire Station – AFFF Area 2 Sample LocationsA-4
Figure 5 Building 60 Current Fire Station – AFFF Area 3 Sample Locations
Figure 6 Fire Department Equipment Testing Area – AFFF Area 4 Sample LocationsA-6
Figure 7 F-16 Emergency Response Site – AFFF Area 5 Sample LocationsA-7
Figure 8 Former FTA 1 (IRP Site 1) - AFFF Area 1 PFBS, PFOA, and PFOS in Soil and Sediment A-8
Figure 9 Former FTA 1 (IRP Site 1) – AFFF Area 1 PFBS, PFOA, and PFOS in Groundwater and
Surface Water
Figure 10 Building 90 Former Fire Station – AFFF Area 2 PFBS, PFOA, and PFOS in Soil and Sediment A-10
Figure 11 Building 90 Former Fire Station – AFFF Area 2 PFBS, PFOA, and PFOS in Groundwater and
Surface Water
Figure 12 Building 60 Current Fire Station – AFFF Area 3 PFBS, PFOA, and PFOS in Soil and Sediment A-12
Figure 13 Building 60 Current Fire Station – AFFF Area 3 PFBS, PFOA, and PFOS in Groundwater and Surface Water
Figure 14 Fire Department Equipment Testing Area – AFFF Area 4 PFBS, PFOA, and PFOS
in Soil
Figure 15 Fire Department Equipment Testing Area – AFFF Area 4 PFBS, PFOA, and PFOS in Groundwater
Figure 16 F-16 Emergency Response Site – AFFF Area 5 PFBS, PFOA, and PFOS in SoilA-16
Figure 17 F-16 Emergency Response Site – AFFF Area 5 PFBS, PFOA, and PFOS in Groundwater
Figure 18 Generalized Stratigraphic Column Burlington Air National Guard Base, Chittenden County,
Vermont
Figure 19 Private Wells within Approximate 1-Mile Radius of the Center of Burlington ANG BaseA-19
ingure is intrute weas within Approximate i-time Radius of the Center of Burnington Arto BaseA-1

- Appendix B Regional Screening Level Calculations
- Appendix C Readiness Reviews, Field Forms, and Boring Logs
- Appendix D Laboratory Case Narratives, Data Validation Reports and Analytical Data Sheets
- Appendix E Investigation-Derived Waste Manifests
- Appendix F Soil Physiochemical Analytical Results
- Appendix G Groundwater Level Measurements and Elevations

Acronyms and Abbreviations

-	
μg/L	micrograms per liter
µg/kg	microgram per kilogram
AFB	Air Force Base
AFCEC	Air Force Civil Engineer Center
AFFF	aqueous film forming foam
amsl	above mean sea level
ANG	Air National Guard
ASL	Aerostar SES LLC
bgs	below ground surface
BRLTN	Burlington Air National Guard Base
btoc	below top of casing
CAS	Chemical Abstracts Service
DOT	Department of Transportation
DPT	direct push technology
dup	duplicate
EPA	Environmental Protection Agency
ft.	foot or feet
FTA	fire training area
GAC	granular-activated carbon
gpm	gallons per minute
GPS	global positioning system
GW	groundwater
HA	health advisory
ID	identification
IDW	investigation-derived waste
IRP	Installation Restoration Program
J	The reported concentration is an estimated value.
LOQ	limit of quantification
mg/kg	milligrams per kilogram
MW	monitoring well
NA	not applicable
ND	not detected
NL	not listed
OWS	
PA	oil/ water separator
	preliminary assessment
PFAS	per- and polyfluorinated alkyl substances
PFBS	perfluorobutane sulfonate
PFOA	perfluorooctanoic acid
PFOS	perfluorooctane sulfonate
pH	potential of hydrogen
QAPP	quality assurance project plan
RSL	regional screening level
SD	sediment
SI	site inspection
SM	silty sand
SO	subsurface soil
SP	poorly graded sand
SP-SM	poorly graded silty sand
SS	surface soil

SVOC	semivolatile organic compound
SW	surface water
TCLP	toxicity characteristic leaching procedure
TOC	total organic carbon
U	The analyte was not detected above the reporting value.
UJ	The analyte was not detected above the reported value. The reported value is
	approximate.
VDEC	Vermont Department of Environmental Conservation
VDH	Vermont Department of Health
VOC	volatile organic compound
VTANG	Vermont Air National Guard
USACE	United States Army Corps of Engineers
USAF	United States Air Force
USCS	Unified Soil Classification System
WWTP	wastewater treatment plant

1.0 INTRODUCTION

Aerostar SES LLC (ASL) under contract to the United States Army Corps of Engineers (USACE) Savannah District (Contract No. W912HN-15-C-0022) conducted screening-level site inspections (SIs) at five known or suspected aqueous film forming foam (AFFF) release areas at Burlington Air National Guard (ANG) Base (Figure 1, Appendix A). The purpose of the inspections was to determine the presence or absence of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in the environment at these areas. PFOA and PFOS are in a class of synthetic fluorinated chemicals used in industrial and consumer products, including defense-related applications. This class of compounds is also referred to as per- and polyfluorinated alkyl substances (PFAS).

In 1970, the United States Air Force (USAF) began using AFFF firefighting agents containing PFOS and PFOA to extinguish petroleum fires. Releases of AFFF to the environment routinely occur during fire training, equipment maintenance, storage, and use. Although manufacturers have reformulated AFFF to eliminate PFOS, the United States Environmental Protection Agency (EPA) continues to permit the use of PFOS-based AFFF, and the USAF maintains a significant inventory of PFOS-based AFFF. As of this report, the USAF is actively removing PFOS-based AFFF from its inventory and replacing it with formulations based on shorter carbon chains, which may be less persistent and bioaccumulative in the environment.

SIs were conducted at the Burlington ANG Base in April 2017 in accordance with contract requirements (USACE, February 2016), a quality assurance project plan (QAPP) (ASL, January 2016) and a site-specific addendum to the QAPP (ASL, February 2017). The QAPP and QAPP addendum were prepared in accordance with EPA guidance (EPA, March 2012) and Air Force Civil Engineer Center (AFCEC) requirements.

The objectives of the SIs were to

- determine if a confirmed release of PFOS, PFOA, or PFBS has occurred at the areas selected for inspection;
- determine if PFOS and PFOA are present in groundwater or surface water at the inspection areas at concentrations exceeding Vermont Groundwater Enforcement Standards;
- determine if PFBS is present in groundwater or surface water above generic EPA Regional Screening Levels (RSLs);
- determine if PFOA is present in soil or sediment at inspection areas above the Vermont Department of Health (VDH) screening level;
- determine if PFBS is present in soil or sediment at inspection areas above generic EPA RSLs;
- determine if PFOS is present in soil or sediment at the inspection areas at concentrations exceeding the calculated RSL; and
- identify potential receptor pathways with immediate impacts to human health (immediate impact to human health is considered consumption of drinking water with PFOS/PFOA above the Vermont Groundwater Enforcement Standard or PFBS above the RSL).

The Vermont Groundwater Enforcement Standard for combined PFOA and PFOS in groundwater is 0.02 μ g/L (Vermont Department of Environmental Conservation [VDEC], December 2016). The EPA health advisory (HA) for drinking water for combined PFOA and PFOS is 0.07 μ g/L. The VDH screening level for PFOA in surface soil is 300 μ g/kg based on a residential use exposure scenario (Vose, March 2016). Screening levels for PFOA and PFOS in soil and sediment were calculated at 1,260 μ g/kg using EPA's RSL calculator (https://epaprgs.ornl.gov/cgi-bin/chemicals/csl_search) (Appendix B). The toxicity value input for the calculator was the Tier 3 value reference dose of 0.00002 milligrams/kilograms per day

derived by EPA in its drinking water health advisories for PFOS (EPA, May 2016a) and PFOA (EPA, May 2016b).

The VDH screening value for PFOA in surface soil was selected as the screening level for surface soil, subsurface soil and sediment because it is more conservative than the calculated RSL. Because the Vermont Groundwater Enforcement Standard for combined PFOA and PFOS is more conservative, 0.02 μ g/L was selected as the screening level for groundwater and surface water.

In summary, a PFOS/PFOA release was considered confirmed when exceedances of the following concentrations were identified:

PFOS:

- 0.02 micrograms per liter (μ g/L) in groundwater and surface water (combined with PFOA value).
- 1,260 micrograms per kilogram (μ g/kg) in soil and sediment.

PFOA:

- 0.02 µg/L in groundwater and surface water (combined with PFOS value).
- $300 \,\mu\text{g/kg}$ in soil and sediment.

Although PFOS and PFOA are the focus of the HA and provide specific targets for the USAF to address in this SI, EPA has also derived RSLs for PFBS, for which there is a Tier 2 toxicity value (Provisional Peer Reviewed Toxicity Value). The USAF considered a release to be confirmed if exceedances of the following concentrations were identified:

PFBS:

- $400 \ \mu g/L$ in groundwater and surface water.
- $1,300,000 \mu g/kg$ in soil and sediment.

To better facilitate reporting and discussion of the investigation, sampling, and analysis of PFOA/ PFOS/ PFBS in this report, these compounds will hereafter be referred to collectively as PFAS. Table 1 presents the screening values for comparing the analytical results for each of the PFAS compounds.

This report does not include assessment of ecological exposure pathways, receptors, or risk from PFAS impacts to the environment. Confirmed releases may require further investigation to fully delineate the extent of contamination and perform a complete risk assessment that includes ecological receptors.

The five areas discussed in this report were identified in a preliminary assessment (PA) conducted in July 2015 (CH2M HILL, October 2015). The five areas (now identified as AFFF Areas 1 through 5) are listed in Table 2 and shown on Figure 2. A sixth area, a private plane crash on the runway, was also identified in the PA; however, at the direction of AFCEC, the site was not included in this effort because the aircraft was privately owned and the crash occurred off Base.

2.0 AREA DESCRIPTIONS

Burlington ANG Base is in western Chittenden County in South Burlington, Vermont, adjacent to the Burlington International Airport. The Base occupies approximately 240 acres of the 942-acre airport property and is 1.5 miles east of the Burlington city limits, 3.5 miles east of Lake Champlain, and approximately 0.25 miles southwest of the Winooski River. Burlington International Airport is to the south and west of the Base, residential neighborhoods are to the north, and agricultural farmland and the Winooski River are to the north and east. The Base supports the operation and maintenance of the 158th Fighter Wing and houses aircraft, support personnel, vehicles, and equipment. Vermont Air National Guard (VTANG) fire and rescue units support both military and civilian aircraft incidents.

			Ø	~					
		EPA Regio	EPA Regional Screening Level	Level	Calculated	EPA Health			_
			Table		Screening	Advisory for	Varmont	Voumont	
		(Nov	(November 2017) ^a		Level for	Drinking Water	Preliminary	r et mont Faforcement	
	Chemical	Residential	Industrial	Tap	Soils and	(Surface Water or	Soil Screening	Standard for	
	Abstracts	Sol	Sol	Water	Sediment	Groundwater)	Values ^d	Groundwater	
Parameter	Number	(µg/kg)	(µg/kg)	$(\mu g/L)$	(µg/kg)	$(\mu g/L)$	(µg/kg)	$(\mu g/L)^e$	_
Perfluorobutane	2-52-06266	1 300 000	16 000 000	700	N/A	NI	NI	NI	_
sulfonate (PFBS)		1,200,000	10,000,000	001	T 7/ T				_
Perfluorooctanoic	225 67 1	NIT	NIT	NI	1 760		300		
acid (PFOA)	1-/0-000	INL	INT	INT	1,200	0 07f	000		
Perfluorooctane	1 26 2921	IIN	IN	IN	1 760	0.01	NIT	0.020	
sulfonate (PFOS)	1-67-60/1	INL	INT	INT	1,200		INL		
^a EPA Regional Screening Levels (November 2017) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2017)	g Levels (Novembe	r 2017) (https://w	ww.epa.gov/risk	/regional-se	sreening-levels-r	sls-generic-tables-novem	ber-2017).		

Table 1 Regulatory Screening Values

^b Screening levels calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search).

° EPA, May 2016a. "Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS)."

EPA, May 2016b. "Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA)."

^d Vose, Sarah. Memorandum to Chuck Schwer, March 2016. Perfluorooctanoic acid (PFOA) Soil Screening Value.

eVermont Department of Environmental Conservation, December 2016. Chapter 12 of the Environmental Protection Rules, "Groundwater Protection Rule and Strategy."

^f The EPA Health Advisory value for drinking water of 0.07 μ g/L applies to the combined detected concentrations of PFOS and PFOA. ^g The Vermont Enforcement Standard for groundwater of 0.02 μ g/L applies to the combined detected concentrations of PFOS and PFOA.

µg/kg = micrograms per kilogram

EPA = Environmental Protection Agency

NL = not listed

$$\label{eq:main_state} \begin{split} \mu g/L = micrograms \ per \ liter\\ N/A = not \ applicable \end{split}$$

 \mathcal{C}

AFFF Area	Location	Associated Existing IRP ID	Rationale	Media of Concern	
1	Former FTA 1	Site 1	 Previous fire training area was not a closed system. No known engineered containment. AFFF likely used as extinguishing agent (volume unknown). 	Subsurface soil Groundwater Sediment Surface water	
2	Building 90 Former Fire Station	N/A	 Known previous storage of small quantities of AFFF. AFFF refilling and truck washing activities may have resulted in releases. No engineered containment. Wash water was periodically pushed out the front bay doors with a squeegee. 	Surface soil Subsurface soil Groundwater Sediment Surface water	
3	Building 60 Current Fire Station	N/A	 AFFF refilling and truck washing activities may have resulted in releases. Less than ½ gallon confirmed release of AFFF in one area. 	Surface soil Subsurface soil Groundwater Sediment Surface water	
4	Fire Department Equipment Testing Area	N/A	 Equipment containing AFFF was tested annually for several years. An unknown volume of AFFF released. No known engineered containment. 	Surface soil Subsurface soil Groundwater	
5	F-16 Emergency Response Site	N/A	 One-time response incident using AFFF from a hand line supplied from a fire truck. No known containment or cleanup. 	Surface soil Subsurface soil Groundwater	

Table 2 Aqueous Film Form Foam Areas and Selection Rationale for Site Inspections at Burlington Air National Guard Base

Table modified from Table 4.1 of *Final Preliminary Assessment Report for Perfluorinated Compounds at Vermont National Guard, South Burlington, Vermont* (CH2M HILL, October 2015)

AFFF = aqueous film forming foam	ANG = Air National Guard
FTA = fire training area	N/A = not applicable
ID = identification	IRP = Installation Restoration Program

The VTANG has operated continuously at Burlington airport since February 1951, when the 134th Fighter Squadron was assigned there. The air Base was activated as Ethan Allen Air Force Base (AFB) in February 1953 and operated on the north side of the airport. Ethan Allen AFB was closed as an active Base in May 1960 because of budget constraints, and the Base was transferred to the ANG and redesignated Burlington ANG Base. The VTANG 134th Fighter-Interceptor Squadron began operating out of the old airport administration building and the adjacent wooden hangar. The 134th Squadron was reorganized as the 158th Fighter Interceptor Group in mid-1960 and was placed under Air Defense Command. The Maintenance and Operations Squadrons immediately moved into the facilities vacated by the USAF with the closure of Ethan Allen AFB. The rest of the 158th Fighter Interceptor Group remained on the Williston Road side of the airfield, and military vehicles were allowed to cross the east end of the runway to transport personnel and materials after receiving clearance from the tower. The Base is now an industrial facility supporting the VTANG 158th Fighter Wing.

The climate at South Burlington, Vermont, consists of moderately warm summers and cold winters with average high temperatures ranging from 80.9 degrees Fahrenheit in July to 27 degrees Fahrenheit in January between 1980 and 2016. Annual precipitation averaged approximately 39 inches between 1980 and 2016, with precipitation between October and May typically falling as snow. Monthly precipitation

ranged from an average low of 2.2 inches in February to average high of 4.3 inches in July. Mean annual snowfall, as measured from 1958 to 1987, was 78 inches (ASL, August 2017).

2.1 FORMER FIRE TRAINING AREA 1 (INSTALLATION RESTORATION PROGRAM SITE 1) – AFFF AREA 1

Former Fire Training Area (FTA) 1 is a grassed field east of NCO Drive on Burlington ANG Base (Figure 3, Appendix A). The field is bordered to the north by chain link fencing that serves as the northern perimeter of the Base and to the west by NCO Drive. A second FTA, FTA 2, is immediately south of FTA 1 and is included as part of FTA 1. Surface topography at FTA 1 slopes downward to the northeast, ranging from 309 to 311 feet above mean sea level (amsl) to approximately 277 feet amsl near Poor Farm Road. An intermittent stream to the southeast flows northeast toward Poor Farm Road. The area is used for recreational vehicle storage, Base equipment storage, and contractor material staging. Emergency response car extraction training is conducted south of FTA 1, and all other fire training activities are now conducted off-Base at the New Hampshire Fire Explorer Training Academy in Concord.

FTA 1 consisted of an approximately 150-foot-diameter primary burn area (FTA 1) and an approximately 50-foot-diameter secondary burn area (FTA 2) encompassing approximately 1/2 acre. Use of the FTAs began in 1960 and was discontinued in 1980. Training exercises were conducted an average of 26 times per year from 1960 to 1973 and an average of 12 times per year from 1973 to 1980. As much as 2,000 gallons of JP-4 were dispersed on the ground during each exercise between 1960 and 1973. From 1973 to 1980, dispersal was reduced to approximately 300 gallons during each exercise. Additionally, approximately 1,500 gallons of various mixtures of acetone, alcohol, cyclohexanone, methyl ethyl ketone, methanol, propyl alcohol, and waste paint pigments were collected from the surrounding communities and burned from 1979 to 1980 instead of JP-4. During periods of use, both FTAs were excavated to create shallow depressions to retain ignitable liquids. The liquids were ignited and the resultant fire would then be extinguished as part of the fire training exercise.

Installation Restoration Program (IRP) Site 1 was established in response to volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) that were released as part of fire training exercises. The uppermost 3 feet of fuel-contaminated soil was excavated from FTAs 1 and 2 in September 1980 and transported off site for disposal. The exact dimensions of the excavation are not known. Currently, IRP Site 1 includes a groundwater collection trench constructed in late 2003/early 2004 northeast of the site along National Guard Avenue and an active air sparging and soil vapor extraction system installed in 2012. Until recently, shallow groundwater intercepted by the groundwater collection trench was pumped to the Base sewer lift station and ultimately to the Airport Parkway Wastewater Treatment Plant (WWTP) in South Burlington, Vermont (CH2MHill, October 2015).

Unvalidated analytical results for a water sample collected by EPA from the groundwater collection trench sump on May 18, 2016, showed PFOS and PFOA concentrations of 38 μ g/L and 9.3 μ g/L respectively (H&S/Nobis Environmental JV, LLC, June 2016). As a result, the groundwater treatment system was modified to address PFOA and PFOS in groundwater at FTA 1. Since August 2017, groundwater from the collection trench has been treated for PFAS by routing it through two granular-activated carbon (GAC) vessels. Treated groundwater is pumped to infiltration trenches constructed at the site and is no longer pumped to the WWTP (CH2MHill, June 2017).

2.2 BUILDING 90 FORMER FIRE STATION – AFFF AREA 2

Building 50, the former fire station at Burlington ANG Base, was demolished in approximately 1995 prior to construction of Building 90, which now occupies the site. Building 90 is on the southwest side of NCO Drive and northeast of the F-16 flightline apron (Figure 4, Appendix A). The building is bordered to the northeast, northwest, and southwest by grassed lawn and to the southeast by a paved access/parking area.

Building 90 has never been used as a fire station and is currently used as an administrative building for deployments and for the STARBASE Vermont day camp for children. A review of historical topographic maps indicates that the original building (Building 50) was constructed between 1972 and 1983. According to historical imagery, Building 90 was constructed between May 2004 and October 2006.

The original fire station building did not have floor drains, and spills were pushed out the front of the three-bay doors facing the runway. A historical photograph suggests that the area in front of the three-bay doors was paved; however, the former bays are beneath the location of the current Building 90. Stormwater from the Building 90 area discharges to a drainage ditch approximately 960 feet to the east/ northeast on the south side of Mustang Pass as shown on Figure 4 in Appendix A.

Because the fire station was active after 1970 (the year the USAF began using AFFF), historical use of AFFF at the fire station is considered likely. The VTANG fire department, however, has no knowledge or records of the quantity of AFFF that may have been used/released during AFFF transfer and filling operations at the former fire station (ASL, August 2017).

2.3 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 3

Building 60, the current Base fire station, is north of the airfield between Taxiway F and NCO Drive (Figure 5, Appendix A). The fire station is bordered to the northwest and southeast by grassed lawn and to the northeast and southwest by paved access ramps.

Fire engine bays are in the northwest end of the building, and office space is in the southeast end of the building. Fire trucks are washed within the bays at Building 60. The building has a floor drain system that transports liquids to an oil/ water separator (OWS) system on the north side of the building. OWS fluid goes to the Base wastewater lift station, where it is pumped under the runway to the South Burlington Airport Parkway WWTP. Stormwater from the Building 60 area discharges across NCO Drive to an intermittent stream approximately 300 feet to the northeast.

The only reported release of AFFF at the building occurred on July 22, 2015, when approximately ½ gallon of AFFF was released while transferring 130 gallons of AFFF from a P-19 vehicle to the foam storage trailer. The AFFF was rinsed into the grass area adjacent to the concrete pad on the northwest side of Building 60. No other releases of AFFF have been reported at Building 60 (ASL, August 2017).

2.4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4

Until July 2015, the VTANG fire department tested fire equipment annually using AFFF along an approximately 700-foot section of Taxiway F as shown on Figure 6 (Appendix A). Foam was typically sprayed directly onto grassed areas on either side of the 50-foot wide taxiway, but occasionally it was sprayed on the taxiway and washed to the grassed areas. The discharge range of the equipment is approximately 225 feet. During the June 2015 test, approximately 65 gallons of AFFF solution (water and AFFF) were released to Taxiway F and washed to grassed areas on either side of the taxiway. On July 30,

2015, the Base received notification from AFCEC to discontinue testing equipment with AFFF because of environmental concerns.

2.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5

A 1995/1996 F-16 bird strike required using a cable arresting system at the north end of the runway to stop the F-16 during landing. An equipment malfunction caused a fire at the tail of the jet, and AFFF from a fire truck hand line was used to extinguish the flames. The AFFF/water solution (volume unknown) was likely washed off the runway to the grassed areas on either side of the runway. The approximate location of the incident was the centerline of the runway just north of the arresting system and North Barrier Road and is outside the current Base boundary as shown on Figures 2 and 7 in Appendix A.

3.0 FIELD ACTIVITIES AND FINDINGS

ASL conducted field activities at Burlington ANG Base the week of April 17, 2017. Fieldwork was conducted in accordance with the QAPP (ASL, January 2016) and the Base-specific field sampling plan addendum to the QAPP (ASL, February 2017). A readiness review covering anticipated hazards, types and proper use of equipment needed for field activities, sampling procedures, and procedures to prevent cross-contamination of samples with PFAS-containing compounds was conducted with all ASL field personnel prior to mobilization. Documentation of this review is in Appendix C.

Field activities included collecting groundwater samples (from direct push technology [DPT] borings, temporary wells, and existing monitoring wells), collecting surface soil and subsurface soil samples (from hand auger and DPT soil borings), and collecting surface water and sediment samples. ASL selected sampling locations in areas most likely to have been impacted by known or suspected AFFF releases. Field duplicate samples were collected at a frequency of one for every 10 samples for each sample media. Matrix spike/matrix spike duplicate samples were collected at a frequency of one for every 20 samples for each media. Boring logs and sample collection forms are in Appendix C.

Soil, sediment, groundwater, and surface water samples were submitted via overnight courier to Maxxam Analytics International Corporation of Mississauga, Ontario, Canada, under chain of custody procedures and analyzed for PFAS using modified EPA Method 537. All samples were analyzed for the following parameters.

Analyte	*CAS Number
Perfluorobutane sulfonate (PFBS)	29420-43-3
Perfluorooctanoic acid (PFOA)	335-67-1
Perfluorooctane sulfonate (PFOS)	1763-23-1
*CAS = Chemical Abstracts Service	

Third-party data validation was conducted on 100% of the analytical data. Overall, the quality of the data was acceptable. The precision and accuracy results were acceptable for the project. Other data quality indicators (representativeness, comparability, and completeness) also met the project objectives. All the results were evaluated as usable for the decisions being made. With the exception of AFFF Area 5 (discussed in Section 3.5.4), determinations of an AFFF release were not based on quality-control-qualified data. The data validation report, laboratory case narratives, and laboratory analytical data sheets are presented in Appendix D.

To provide basic soil parameter information, ASL also collected representative composite surface soil and subsurface soil samples for physiochemical parameters from each area. The composite samples were

submitted to CT Laboratories LLC of Baraboo, Wisconsin, and analyzed for potential of hydrogen (pH), particle size distribution, total organic carbon (TOC), and percent solids; the results of these analyses are in Appendix F.

Soil borings were advanced with a track-mounted DPT drill rig. Surface soil samples were collected to a depth of 6 inches below ground surface (bgs) with stainless steel hand augers. Subsurface soil samples were collected immediately above the water saturated/unsaturated soil interface using a DPT Macro-core[®] sampler with acetate liner. Soil samples were placed in containers using stainless steel spoons.

Groundwater samples collected from existing and temporary monitoring wells were collected with peristaltic pumps and disposable polyvinyl tubing inserted to the approximate midpoint of the saturated portion of the screened interval. Groundwater samples were collected from DPT soil borings using a reusable GeoProbe[®] SP16 drive point groundwater sampler consisting of a sheathed 0.78-inch inside diameter by 41-inch-long stainless steel screen. The drive point was advanced to the desired depth and the sheath retracted, exposing the screen. Groundwater samples were then collected with peristaltic pumps and polyvinyl tubing inserted through the drill rods into the screen.

Sediment samples were collected using stainless steel spoons. Surface water samples were collected by attaching the sample container to an extendable rod designed for sampling and dipping the container into the water.

Coordinates and elevations for soil borings and temporary wells at AFFF Areas 1, 2, and 3 were established by Button Professional Land Surveyors, PC of South Burlington, Vermont. Northing and easting coordinates were recorded in the Vermont State Plane Coordinate System based on North American Datum 1983. Elevations were referenced to North American Vertical Datum 1988. Soil borings at AFFF Areas 4 and 5 were recorded with a Trimble GeoX7 handheld global positioning system (GPS) unit. All sediment and surface water sample points were recorded with a Trimble GeoX7 GPS unit.

Sample locations, area-specific lithology, groundwater flow direction, analytical results, and conclusions for each AFFF area are presented in Sections 3.1 through 3.5.

3.1 FORMER FIRE TRAINING AREA 1 (INSTALLATION RESTORATION PROGRAM SITE 1) – AFFF AREA 1

3.1.1 Sample Locations

To assess possible PFAS impacts from previous use of AFFF at FTA 1 (including FTA 2), three subsurface soil samples (two primary and one duplicate), nine groundwater samples (eight primary and one duplicate), two sediment samples (one primary and one duplicate), and two surface water samples (one primary and one duplicate) were collected. Subsurface soil and drive point groundwater samples were collected from soil borings BRLTN01-001 and BRLTN01-002 at FTA 1 and FTA 2.

Groundwater samples were collected from existing monitoring wells V1-BP2 and V1-BP3 at FTA 1 (source area) and from existing downgradient wells MW-102, MW-103, and V1-MW-14L. Downgradient monitoring wells MW-103 and V1-MW-14L were sampled to assess possible PFAS impacts within known organic solvent plumes identified during the remedial investigation of FTA 1, which may represent preferred pathways (Parsons, June 2002). Downgradient well MW-102 was sampled to evaluate possible PFAS impacts along a more easterly flow pathway toward the Winooski River. V1-MW-14L was sampled in lieu of planned well MW-104, which could not be sampled because of a blockage in the

well. A sample was also collected from the groundwater collection trench sump (BRLTN01-TRENCHSUMP) near Poor Farm Road to verify the May 2016 EPA sampling results.

Sediment and surface water samples were collected at BRLTN01-003 from an intermittent stream immediately south of the groundwater collection trench sump and downstream from the FTAs. Sample locations are shown on Figure 3 in Appendix A. Surface soil was not sampled because hydrocarbon/ solvent-impacted soil had been excavated from the area during a previous remediation effort.

3.1.2 Lithology

The two soil borings completed at the former FTA were terminated at 15 feet bgs. Soils encountered at these borings included silty sand (Unified Soil Classification System [USCS] - SM), well-graded sand (USCS – SW), poorly graded sand (USCS – SP), and silt (USCS – ML). Detailed boring logs are included in Appendix C.

3.1.3 Groundwater Flow

On April 21, 2017, groundwater level measurements were collected from eight existing monitoring wells at FTA 1. Total depths of these wells range from 11 feet to 27 feet bgs, and groundwater was detected at depths ranging from 3.07 feet to 18.95 feet below top of casing (btoc). Groundwater at FTA 1 flows to the northeast toward the groundwater collection trench as shown on Figure 3 in Appendix A. Downgradient of the collection trench, groundwater flows to the east/northeast toward the Winooski River. Groundwater level measurements and elevations on April 21, 2017, are summarized in Table G-1 in Appendix G.

3.1.4 Analytical Results

Subsurface Soil

Two primary subsurface soil samples and one duplicate sample were collected from soil borings BRLTN01-001 and BRLTN01-002 at FTA 1. PFBS was not detected in any of the samples, but PFOA and PFOS were detected in all three samples. PFOA was detected at concentrations ranging from an estimated 0.38 μ g/kg to 25 μ g/kg, and PFOS was detected at concentrations ranging from an estimated 4.7 μ g/kg to an estimated 1,200 μ g/kg, all below their respective screening levels. Results are summarized in Table 3 and shown on Figure 8 in Appendix A.

Soil Physiochemical Analyses

To provide basic soil parameter information, composite surface soil and subsurface soil samples were collected from FTA 1 soil borings and submitted for pH, TOC, and grainsize analysis. The surface soil sample (BRLTN01-004-SS-001) was composed of equal aliquots of soil collected from borings BRLTN01-001 and BRLTN01-002 at 6 inches bgs. The subsurface soil sample (BRLTN01-004-SO-008) was composed of equal aliquots of soil collected from the same borings at depths of 8 and 7feet respectively. Table F-1 summarizing the physiochemical data and supporting laboratory data sheets are included in Appendix F.

	Coursela ID	BRLTN01-001-	BRLTN01-002-	BRLTN01-002-
	Sample ID	SO-008	SO-007	SO-907 (dup)
	Date Collected	04/20/17	04/19/17	04/19/17
	Depth (ft. bgs)	7 - 8	6 - 7	6 - 7
	Screening	Darrah	Derek	Darrak
Analyte	Level (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)
Perfluorobutane sulfonate (PFBS)	1,300,000ª	0.66 UJ	5.1 U	6.2 U
Perfluorooctanoic acid (PFOA)	300 ^b	0.38 J	18	25
Perfluorooctane sulfonate (PFOS)	1,260°	4.7 J	590 J	1,200 J

Table 3 Former Fire Training Area 1 (AFFF Area 1) Subsurface Soil Analytical Results
--	--------------------------------------

Bold values indicate analyte detected at concentration indicated.

^aEPA Regional Screening Levels (RSLs) for Residential Soil (November 2017) (https://www.epa.gov/risk/regionalscreening-levels-rsls-generic-tables-november-2017)

^b Vose, Sarah. Memorandum to Chuck Schwer, March 2016. Perfluorooctanoic acid (PFOA) Soil Screening Value. ^cScreening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search). $\mu g/kg = micrograms/kilogram$ bgs = below ground surface

BRLTN = Burlington Air National Guard Base

ft. = foot or feetSO = subsurface soil dup = field duplicate

J = reported concentration is an estimated value

U = analyte was not detected above the reported value

Groundwater

Eight primary groundwater samples and one duplicate sample were collected at AFFF Area 1. Groundwater samples were collected from two soil borings (BRLTN01-001 and BRLTN01-002), five existing monitoring wells (two source area wells and three downgradient wells), and from the downgradient groundwater collection trench sump.

PFBS was detected in seven of eight groundwater samples (six primary samples and one duplicate sample) and in the trench sump sample at concentrations ranging from 0.52 μ g/L to 3.4 μ g/L, all below the RSL of 400 μ g/L. PFOA and PFOS were also detected in each of the groundwater samples and in the trench sump sample at combined concentrations ranging from 4.75 μ g/L to 72 μ g/L all above the 0.02 µg/L screening level. Groundwater analytical results for PFBS, PFOA, and PFOS are presented in Table 4 and are shown on Figure 9 in Appendix A.

Sediment

One primary and one duplicate sediment sample were collected from an intermittent stream downstream from FTA 1 at BRLTN01-003. PFBS was detected at concentrations of 1.2 µg/kg and 1.3 µg/kg; PFOA was detected at concentrations of 2.2 µg/kg and 2.0 µg/kg; and PFOS was detected at concentrations of 170 µg/kg and 180 µg/kg. All PFBS, PFOA, and PFOS detections were below their respective screening levels as summarized in Table 5 and shown on Figure 8 in Appendix A.

		V- BKLINUI-MW-	04/20/17	12		Result	$(\mu g/L)$	3.4	41	31	72
I Results	WA FUNDING	V1BP2-009	04/20/17	6		Result	$(\mu g/L)$	0.10 U	1.3	16	17.3
Table 4 Former Fire Training Area 1 (AFFF Area 1) Groundwater Analytical Results	BRLTN01-	1 KENCHSUMF- 001	04/19/17	6		Result	$(\mu g/L)$	0.87	4.2	15	19.2
FFF Area 1) Grou		GW-015	04/19/17	15		Result	(µg/L)	0.52	2.7	3.0	5.7
uining Area 1 (Al		GW-013	04/20/17	13		Result	(µg/L)	1.1	0.47	8.8	9.27
Former Fire Tra		Sample ID	Date Collected	Depth (ft. bgs)	Screening	Level	$(\mu g/L)$	400^{a}	0.02^{b}	0.02^{b}	0.02 ^b
Table 4							Analyte	Perfluorobutane sulfonate (PFBS)	Perfluorooctanoic acid (PFOA)	Perfluorooctane sulfonate (PFOS)	PFOS +PFOA

		BRLTN01-	BRLTN01-	BRLTN01- MW103-909	BRLTN01-
	Sample ID	MW102-011	MW103-009	(dnb)	V1MW14L-008
	Date Collected	04/18/17	04/18/17	04/18/17	04/19/17
	Depth (ft. bgs)	11	6	6	8
	Screening Level	Result	Result	Result	Result
Analyte	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)
Perfluorobutane sulfonate (PFBS)	400^{a}	1.4	1.7	1.7	1.7 J
Perfluorooctanoic acid (PFOA)	0.02^{b}	0.55	1.4	1.4	1.8
Perfluorooctane sulfonate (PFOS)	0.02^{b}	4.2	18	20	7.6
PFOS +PFOA	0.02^{b}	4.75	19.4	21.4	9.4
Bold values indicate analyte detected at concentration indicated	pncentration indicated.	Shaded valu	es indicate analyte exc	Shaded values indicate analyte exceeds screening criteria	

^aEPA Regional Screening Levels for Residential Soil (November 2017))https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2017)

^{bV}ermont Department of Environmental Conservation, December 2016. Chapter 12 of the Environmental Protection Rules, "Groundwater Protection Rule and bgs = below ground surface dup = duplicate FTA = fire training area ID = identification MW = monitoring well Strategy."

 $\mu g/L = micrograms per liter$ BRLTN = Burlington Air National Guard Base

ft = foot or feet

GW = groundwater

J = reported concentration is an estimated value

U = analyte was not detected above the reported value

M2032.0001

		BRLTN01-003-	BRLTN01-003-
	SD-001	SD-901 (dup)	
	04/18/17	04/18/17	
	Depth (ft. bgs)	0 - 0.5	0 - 0.5
	Screening	Result	Result
Analyte	Level (µg/kg)	(µg/kg)	(µg/kg)
Perfluorobutane sulfonate (PFBS)	1,300,000ª	1.2	1.3
Perfluorooctanoic acid (PFOA)	300 ^b	2.2	2.0
Perfluorooctane sulfonate (PFOS)	1,260°	170	180

Table 5 Former Fire Training Area 1 (AFFF Area 1) Sediment Analytical Results

Bold values indicate analyte detected at concentration indicated.

^aEPA Regional Screening Levels for Residential Soil (November 2017) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2017)

^b Vose, Sarah. Memorandum to Chuck Schwer, March 2016. *Perfluorooctanoic acid (PFOA) Soil Screening Value.* ^cScreening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search). µg/kg = micrograms per kilograms BRLTN = Burlington Air National Guard Base ft. = foot or feet ID = identification ^b Vose, Sarah. Memorandum to Chuck Schwer, March 2016. *Perfluorooctanoic acid (PFOA) Soil Screening Value.* bgs = below ground surface dup = field duplicate FTA = fire training area SD = sediment

Surface Water

One primary and one duplicate surface water sample were also collected from the intermittent stream downstream from FTA 1 at BRLTN01-003. PFBS was detected in both samples at concentrations of 2.0 μ g/L and 1.9 μ g/L, below the 400 μ g/L screening level. PFOA and PFOS were detected in both samples at combined concentrations of 35.3 μ g/L and 38.4 μ g/L, above the 0.02 μ g/L screening level as summarized in Table 6 and shown on Figure 9 in Appendix A.

Table 6 Former Fire Training Area 1 (AFFF Area 1) Surface Water Analytical Results					
	PDI TN01 003	BDI TNA1 003			

		BRLTN01-003-	BRLTN01-003-
	Sample ID	SW-001	SW-901 (dup)
	Date Collected	04/18/17	04/18/17
	Screening	Result	Result
Analyte	Level (µg/L)	(µg/L)	(µg/L)
Perfluorobutane sulfonate (PFBS)	400 ^a	2.0	1.9
Perfluorooctanoic acid (PFOA)	0.02 ^b	1.3	1.4
Perfluorooctane sulfonate (PFOS)	0.02 ^b	34	37
PFOS +PFOA	0.02 ^b	35.3	38.4

Bold values indicate analyte detected at concentration indicated.

Shaded values indicate analyte exceeds screening criteria.

^aEPA Regional Screening Levels for Residential Soil (November 2017) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2017)

^bVermont Department of Environmental Conservation, December 2016. Chapter 12 of the Environmental Protection Rules, "Groundwater Protection Rule and Strategy."

SW = surface water

BRLTN = Burlington Air National Guard Base ID = identification

3.1.5 Conclusions

Use of AFFF during training exercises at FTA 1 has resulted in releases of PFAS to the environment. Although PFOA and PFOS concentrations in soil and sediment were below screening levels, combined PFOA and PFOS concentrations exceeded the screening level in groundwater and surface water. Combined PFOA and PFOS concentrations were above screening levels in seven primary and one

 $[\]mu g/L = micrograms per liter$

dup = field duplicate

duplicate groundwater sample, one primary and one duplicate surface water sample, and a groundwater collection trench sump sample. The maximum combined PFOA and PFOS concentration detected was 72 μ g/L in groundwater and 38.4 μ g/L in surface water. PFBS was not detected above screening levels in any media sampled at AFFF Area 1.

3.2 BUILDING 90 FORMER FIRE STATION – AFFF AREA 2

3.2.1 Sample Locations

To assess possible PFAS impacts from AFFF that may have been used/released during AFFF transfer and filling operations at the former fire station, four surface soil samples (three primary and one duplicate), three subsurface soil samples, three groundwater samples, one sediment sample, and one surface water sample were collected. Surface soil and subsurface soil samples were collected from soil borings BRLTN02-001, BRLTN02-002, and BRLTN02-003 around the original fire station footprint. Groundwater samples were collected from temporary monitoring wells installed in each of the soil borings. Sediment and surface water samples were collected at BRLTN02-004 at a downstream stormwater discharge at a drainage ditch approximately 960 feet east/northeast of Building 90 on the south side of Mustang Pass. It is noted that after completion of the SI sampling effort (during review of the draft SI report), the Base provided information indicating that 730 tons of soil were removed from the drainage swale in 2012 as part of a remedial action for IRP Site 4 (Drainage Ditch Area). Soil was excavated to a depth of 2 feet and backfilled. The location of sediment and surface water sample BRLTN02-004 is within the limits of the remedial action area (CH2MHill, June 2012). Sample locations are shown on Figure 4 in Appendix A.

3.2.2 Lithology

The three soil borings completed at AFFF Area 2 were terminated at depths ranging from 30 to 35 feet bgs. Soils encountered at these borings included silty sand (USCS – SM) and well-graded sand (USCS – SW), and poorly graded sand (USCS – SP). Detailed boring logs are included in Appendix C.

3.2.3 Groundwater Flow

On April 21, 2017, groundwater level measurements were collected from the three temporary monitoring wells at the former fire station (BRLTN02-001, BRLTN02-002, and BRLTN02-003). Total depth of these wells ranged from 30 feet to 35 feet bgs, and groundwater was detected at depths ranging from 25.05 feet to 29.29 feet btoc. Based on the April 21, 2017, water level measurements and water levels collected from adjacent AFFF Area 3, groundwater flows to the east/northeast as shown on Figure 4 in Appendix A. Water level measurements and groundwater elevations are summarized in Table G-1 in Appendix G.

3.2.4 Analytical Results

Surface Soil

Three primary surface soil samples and one duplicate sample were collected from soil borings BRLTN02-001, BRLTN02-002, and BRLTN02-003 at Building 90, site of the former fire station. PFBS was detected in the duplicate sample collected at BRLTN02-001 at an estimated concentration of 0.28 μ g/kg but was not detected in any of the three primary samples. PFOA and PFOS were detected in all four samples. PFOA was detected at estimated concentrations ranging from 0.53 μ g/kg to 0.91 μ g/kg and PFOS was detected at estimated concentrations ranging from 5.6 μ g/kg to 31 μ g/kg. PFOA and PFOS

detections were all below their respective screening levels, as summarized in Table 7 and shown on Figure 10 in Appendix A.

	Sample ID	BRLTN02-001- SS-001	BRLTN02-001- SS-901 (dup)	BRLTN02-002- SS-001	BRLTN02-003- SS-001
D	ate Collected	04/18/17	04/18/17	04/18/17	04/18/17
D	epth (ft. bgs)	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Analyte	Screening Level (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)
Perfluorobutane sulfonate (PFBS)	1,300,000ª	0.50 UJ	0.28 J	0.66 U	0.66 UJ
Perfluorooctanoic acid (PFOA)	300 ^b	0.53 J	0.69 J	0.91 J	0.70 J
Perfluorooctane sulfonate (PFOS)	1,260°	31 J	28	21	5.6 J

Table 7 Building 90 Former Fire Station Location (AFFF Area 2) Surface Soil Analytical Results

Bold values indicate analyte detected at concentration indicated.

^aEPA Regional Screening Levels (RSLs) for Residential Soil (November 2017) [https://www.epa.gov/risk/regional-screeninglevels-rsls-generic-tables-november-2017]

^bVose, Sarah. Memorandum to Chuck Schwer, March 2016. Perfluorooctanoic acid (PFOA) Soil Screening Value.

^cScreening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/cls search) BRLTN = Burlington Air National Guard

 $\mu g/kg = micrograms per kilogram$ bgs = below ground surface

dup = duplicate

ID = identification

SS = surface soil

J = reported concentration is an estimated value U = analyte was not detected above the reported value

Subsurface Soil

Three subsurface soil samples were also collected from soil borings BRLTN02-001, BRLTN02-002, and BRLTN02-003 at Building 90. PFBS was not detected in any of the samples. PFOA and PFOS, however, were detected in all three samples. PFOA was detected at estimated concentrations ranging from 0.52 μ g/kg to 7.8 μ g/kg, and PFOS was detected at concentrations ranging from an estimated 20 μ g/kg to 160 µg/kg. PFOA and PFOS detections were all below their respective screening levels, as summarized in Table 8 and shown on Figure 10 in Appendix A.

Table 8 Building 90 Former Fire Station Location (AFFF Area 2) Subsurface Soil Analytical
Results

		BRLTN02-001-	BRLTN02-002-	BRLTN02-003-
	SO-020	SO-020	SO-025	
	04/18/17	04/18/17	04/18/17	
	19 - 20	19 - 20	24 - 25	
	Screening	Result	Result	Result
Analyte	Level (µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
Perfluorobutane sulfonate (PFBS)	1,300,000ª	0.58 U	0.66 U	0.52 UJ
Perfluorooctanoic acid (PFOA)	300 ^b	1.7	0.52 J	7.8 J
Perfluorooctane sulfonate (PFOS)	1,260°	160	160	20 J

Bold values indicate analyte detected at concentration indicated.

^aEPA Regional Screening Levels (RSLs) for Residential Soil (November 2017) (https://www.epa.gov/risk/regional-screeninglevels-rsls-generic-tables-november-2017)

^bVose, Sarah. Memorandum to Chuck Schwer, Director of Waste Management, Vermont Department of Environmental Conservation, March 2016. Perfluorooctanoic acid (PFOA) Soil Screening Value.

^cScreening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl search).

bgs = below ground surface $\mu g/kg = micrograms per kilogram$

ID = identification

ft. = foot or feetSO = subsurface soil

BRLTN = Burlington Air National Guard Base J = reported concentration is an estimated value U = analyte was not detected above the reported value

Soil Physiochemical Analyses

To provide basic soil parameter information, composite surface soil and subsurface soil samples were collected from Building 90 soil borings and submitted for pH, TOC, and grainsize analysis. The surface soil sample (BRLTN02-005-SS-001) was composed of equal aliquots of soil collected from borings BRLTN02-001, BRLTN02-002, and BRLTN02-003 at 6 inches bgs. The subsurface soil sample (BRLTN02-005-SO-032) was composed of equal aliquots of soil collected from the same borings at 20 feet bgs, 20 feet bgs, and 25 feet bgs, respectively. Table F-1 summarizing the physiochemical data and supporting laboratory data sheets are included in Appendix F.

Groundwater

Three groundwater samples were collected from the three temporary wells at Building 90. PFBS was detected in all three samples at concentrations ranging from 0.14 μ g/L to 0.47 μ g/L, below the 400 μ g/L screening level. PFOA and PFOS were also detected in all three samples at combined concentrations ranging from 9.48 μ g/L to 54.5 μ g/L, all above the 0.02 μ g/L screening level. PFBS, PFOA, and PFOS groundwater analytical results are summarized in Table 9 and shown on Figure 11 in Appendix A.

		BRLTN02-001-	BRLTN02-002-	BRLTN02-003-
	Sample ID	GW-027	GW-029	GW-032
Date Collected		04/20/17	04/21/17	04/21/17
Depth (ft. btoc)		27	29	32
	Screening			
	Level	Result	Result	Result
Analyte	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Perfluorobutane sulfonate (PFBS)	400 ^a	0.25 J	0.47	0.14
Perfluorooctanoic acid (PFOA)	0.02 ^b	0.23	0.50	0.28
Perfluorooctane sulfonate (PFOS)	0.02 ^b	14	54	9.2
PFOS +PFOA	0.02 ^b	14.23	54.5	9.48

Table 9 Building 90 Former Fire Station Location (AFFF Area 2) Groundwater Analytical Results

Bold values indicate analyte detected at concentration indicated.

Shaded values indicate analyte exceeds screening criteria.

^aEPA Regional Screening Levels for Residential Soil (November 2017) (https://www.epa.gov/risk/regional-screening-levelsrsls-generic-tables-november-2017)

^bVermont Department of Environmental Conservation, December 2016. Chapter 12 of the Environmental Protection Rules, "Groundwater Protection Rule and Strategy." BRLTN = Burlington Air National Guard Base

ft. = foot or feet

ID = identification

 $\mu g/L = micrograms per liter$

btoc = below top of casing

GW = groundwater

J = reported concentration is an estimated value

<u>Sed</u>iment

One sediment sample was collected from a drainage ditch approximately 960 feet east/northeast of Building 90 at BRLTN02-004. PFOS was detected in the sample at a concentration of 2.3 μ g/kg, below the 1,260 µg/kg screening level. PFBS and PFOA were not detected. Analytical results are summarized in Table 10 and shown on Figure 10 in Appendix A.

Surface Water

One surface water sample was also collected from the drainage ditch east/northeast of Building 90 at BRLTN02-004. PFBS was detected at a concentration of 0.035 μ g/L, below the 400 μ g/L screening level. PFOS was detected at a concentration of 0.081 μ g/L, above the 0.02 μ g/L screening level; PFOA was not detected. Analytical results are summarized in Table 11 and shown on Figure 11 in Appendix A.

	BRLTN02-004-SD-001	
	04/18/17	
	Depth (ft. bgs)	0 - 0.5
	Screening Level	Result
Analyte	(µg/kg)	(µg/kg)
Perfluorobutane sulfonate (PFBS)	1,300,000ª	0.72 U
Perfluorooctanoic acid (PFOA)	300 ^b	0.72 U
Perfluorooctane sulfonate (PFOS)	1,260°	2.3

Table 10 Building 90 Former Fire Station Location (AFFF Area 2) Sediment Analytical Results

Bold values indicate analyte detected at concentration indicated.

^aEPA Regional Screening Levels (RSLs) for Residential Soil (November 2017) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2017).

^bVose, Sarah. Memorandum to Chuck Schwer, March 2016. *Perfluorooctanoic acid (PFOA) Soil Screening Value*. ^cScreening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search).

 $\mu g/kg = micrograms per kilogram$

BRLTN = Burlington Air National Guard Base

ft. = foot or feet

bgs = feet below ground surface

ID = identification

SD = sediment

U = analyte was not detected above the reported value

Table 11 Building 90 Former Fire Station Location (AFFF Area 2)Surface Water Analytical Results

	BRLTN02-004-SW-001	
	04/18/17	
	Screening	Result
Analyte	Level (µg/L)	(µg/L)
Perfluorobutane sulfonate (PFBS)	400 ^a	0.035
Perfluorooctanoic acid (PFOA)	0.02 ^b	0.010 U
Perfluorooctane sulfonate (PFOS)	0.02 ^b	0.081
PFOS +PFOA	0.02 ^b	0.081

Bold values indicate analyte detected at concentration indicated.

Shaded values indicate analyte exceeds screening criteria.

^aEPA Regional Screening Levels for Residential Soil (November 2017) [https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2017]

^bVermont Department of Environmental Conservation, December 2016. Chapter 12 of the Environmental Protection Rules, "Groundwater Protection Rule and Strategy."

 $\mu g/L = micrograms \ per \ liter$

ID = identificationU = analyte was not detected above the reported value BRLTN = Burlington Air National Guard SW = surface water

3.2.5 Conclusions

Apparent AFFF spills at the former fire station have resulted in releases of PFAS to the environment. Combined PFOA and PFOS concentrations were above screening levels in each of the three groundwater samples and in the one surface water sample collected. The maximum combined PFOA and PFOS concentration was $54.5 \ \mu g/L$ in groundwater and $0.081 \ \mu g/L$ in surface water. PFOA and PFOS concentrations in soil and sediment were below screening levels, and PFBS was not detected above screening levels in any sampled media at AFFF Area 2. The location of sediment and surface water sample BRLTN02-004 is within the limits of the IRP Site 4 (Drainage Ditch Area) remedial action area, and the sediment sample represents backfill and sediment deposition since 2012.

3.3 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 3

3.3.1 Sample Locations

To assess possible PFAS impacts from the release of approximately 1/2 gallon of AFFF at the fire station, two surface soil samples, two subsurface soil samples, two groundwater samples, one sediment sample, and one surface water sample were collected. Surface soil and subsurface soil samples were collected from soil borings BRLTN03-001 and BRLTN03-002 on the north side of Building 60 in the grassed area, where the spilled AFFF was rinsed. Groundwater samples were collected from temporary wells installed at each soil boring. Sediment and surface water samples were collected at BRLTN03-003, where storm water from the fire station discharges to a drainage ditch approximately 300 feet to the northeast across NCO Drive. Sample locations are shown on Figure 5 in Appendix A.

3.3.2 Lithology

The two soil borings completed at AFFF Area 3 were terminated at a depth of 25 feet bgs. Soils encountered included silty sand (USCS – SM) well-graded sand (USCS – SW), poorly graded sand (USCS – SP), and sandy silt (USCS – ML). Detailed boring logs are included in Appendix C.

3.3.3 Groundwater Flow

On April 21, 2017, groundwater level measurements were collected from the two temporary monitoring wells at the current fire station (BRLTN03-001 and BRLTN03-002). Total depth of each well was 25 feet bgs, and groundwater was detected at 18.87 feet and 18.35 feet btoc, respectively. Based on these water level measurements (and water levels collected from adjacent AFFF Area 2), groundwater flows to the east/ northeast as shown on Figure 5 in Appendix A. Water level measurements and groundwater elevations are summarized in Table G-1 in Appendix G.

3.3.4 Analytical Results

Surface Soil

Two surface soil samples were collected from soil borings BRLTN03-001 and BRLTN03-002 at Building 60. PFBS was detected in both samples at estimated concentrations of 0.32 μ g/kg and 0.71 μ g/kg. PFOA was detected at estimated concentrations of 1.5 μ g/kg and 0.92 μ g/kg, and PFOS was detected at concentrations of 280 μ g/kg and 170 μ g/kg. All PFBS, PFOA, and PFOS detections were below their respective screening levels, as summarized in Table 12 and shown on Figure 12 in Appendix A.

Subsurface Soil

Two subsurface soil samples were also collected from soil borings BRLTN03-001 and BRLTN03-002 at Building 60. PFBS was in both samples at estimated concentrations of 0.37 μ g/kg and 0.49 μ g/kg. PFOA was detected at concentrations of 1.0 μ g/kg and an estimated 0.54 μ g/kg, and PFOS was detected at concentrations of 140 μ g/kg and 110 μ g/kg. All PFBS, PFOA, and PFOS detections were below their respective screening levels, as summarized in Table 13 and shown on Figure 12 in Appendix A.

		BRLTN03-001-	BRLTN03-002-
	Sample ID	SS-001	SS-001
	Date Collected	04/18/17	04/18/17
	Depth (ft. bgs)	0 - 0.5	0 - 0.5
	Screening		
	Level	Result	Result
Analyte	(µg/kg)	(µg/kg)	(µg/kg)
Perfluorobutane sulfonate (PFBS)	1,300,000ª	0.32 J	0.71 J
Perfluorooctanoic acid (PFOA)	300 ^b	1.5 J	0.92 J
Perfluorooctane sulfonate (PFOS)	1,260°	280	170

Table 12 Building 60 Current Fire Station (AFFF Area 3) Surface Soil Analytical Results

Bold values indicate analyte detected at concentration indicated.

^aEPA Regional Screening Levels (RSLs) for Residential Soil (November 2017) [https://www.epa.gov/risk/regionalscreening-levels-rsls-generic-tables-november-2017]

^bVose, Sarah, State Toxicologist, Vermont Department of Health. Memorandum to Chuck Schwer, Director of Waste Management, Vermont Department of Environmental Conservation, March 2016. Perfluorooctanoic acid (PFOA) Soil Screening Value.

^cScreening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl search).

 $\mu g/L = micrograms per liter$

BRLTN = Burlington Air National Guard

ID = identification SS = surface soil

bgs = below ground surface

ft. = foot or feet

J = reported concentration is an estimated value

Table 13 Building 60 Current Fire Station AFFF Area 3 Subsurface Soil Analytical Results

		BRLTN03-001-	BRLTN03-002-
	Sample ID	SO-014	SO-015
	Date Collected	04/18/17	04/18/17
	Depth (ft. bgs)	13 - 14	14 - 15
Analyte	Screening Level (µg/kg)	Result (µg/kg)	Result (µg/kg)
Perfluorobutane sulfonate (PFBS)	1,300,000ª	0.37 J	0.49 J
Perfluorooctanoic acid (PFOA)	300 ^b	1.0	0.54 J
Perfluorooctane sulfonate (PFOS)	1,260°	140	110

Bold values indicate analyte detected at concentration indicated.

^aEPA Regional Screening Levels (RSLs) for Residential Soil (November 2017) (https://www.epa.gov/risk/regionalscreening-levels-rsls-generic-tables-november-2017)

^bVose, Sarah. Memorandum to Chuck Schwer, March 2016. Perfluorooctanoic acid (PFOA) Soil Screening Value. ^cScreening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl search). $\mu g/kg = micrograms per kilogram$ bgs = below ground surface

BRLTN = Burlington Air National Guard Base

ft. = foot or feet

ID = identification

J = reported concentration is an estimated value

SO = subsurface soil

Soil Physiochemical Analyses

To provide basic soil parameter information, composite surface soil and subsurface soil samples were collected from Building 60 soil borings and submitted for pH, TOC, and grainsize analysis. The surface soil sample (BRLTN03-004-SS-001) was composed of equal aliquots of soil collected from borings BRLTN03-001 and BRLTN03-002 at 6 inches bgs. The subsurface soil sample (BRLTN03-004-SO-016) was composed of equal aliquots of soil collected from the same borings at 14 feet and 15 feet bgs, respectively. Table F-1 summarizing the physiochemical data and supporting laboratory data sheets are included in Appendix F.

Groundwater

Two groundwater samples were also collected from temporary wells installed at borings BRLTN03-001 and BRLTN03-002 at the current fire station. PFBS was detected in both samples at concentrations of 2.5 µg/L and 1.8 µg/L, below the 400 µg/L screening level. PFOA and PFOS were detected at combined concentrations of 62 μ g/L and 66.97 μ g/L, above the 0.02 μ g/L screening level. Groundwater analytical results are summarized in Table 14 and shown on Figure 13 in Appendix A.

		BRLTN03-001-	BRLTN03-002-
	Sample ID	GW-022	GW-022
	Date Collected	04/20/17	04/20/17
	Depth (ft. btoc)	22	22
	Screening	Result	Result
Analyte	Level (µg/L)	(µg/L)	(µg/L)
Perfluorobutane sulfonate (PFBS)	400 ^a	2.5	1.8
Perfluorooctanoic acid (PFOA)	0.02 ^b	2.0	0.97
Perfluorooctane sulfonate (PFOS)	0.02 ^b	60	66
PFOS +PFOA	0.02 ^b	62	66.97

Bold values indicate analyte detected at concentration indicated.

Shaded values indicate analyte exceeds screening criteria.

^aEPA Regional Screening Levels for Residential Soil (November 2017) [https://www.epa.gov/risk/regionalscreening-levels-rsls-generic-tables-november-2017]

^bVermont Department of Environmental Conservation, December 2016. Chapter 12 of the Environmental Protection Rules, "Groundwater Protection Rule and Strategy."

 $\mu g/L = micrograms per liter$

btoc = feet below top of casing

GW = groundwater

BRLTN = Burlington Air National Guard ft. = foot or feetID = identification

Sediment

One sediment sample was collected from a drainage ditch approximately 300 feet northeast of Building 60 at BRLTN03-003. PFBS was detected in the sample at an estimated concentration of 0.43 µg/kg, and PFOS was detected at a concentration of 63 μ g/kg, both below their respective screening levels. PFOA was not detected in the sample. Analytical results are summarized in Table 15 and shown on Figure 12 in Appendix A.

Table 15 Building 60 Current Fire Station (AFFF Area 3) Sediment Analytical Results

	Sample ID	BRLTN03-003-SD-001
	Date Collected	04/18/17
	Depth (ft. bgs)	0 - 0.5
Analyte	Screening Level (µg/kg)	Result (µg/kg)
Perfluorobutane sulfonate (PFBS)	1,300,000ª	0.43 J
Perfluorooctanoic acid (PFOA)	300 ^b	0.66 U
Perfluorooctane sulfonate (PFOS)	1,260°	63

Bold values indicate analyte detected at concentration indicated.

^aEPA Regional Screening Levels (RSLs) for Residential Soil (November 2017) [https://www.epa.gov/risk/regional-screeninglevels-rsls-generic-tables-november-2017]

^bVose, Sarah, State Toxicologist, Vermont Department of Health. Memorandum to Chuck Schwer, Director of Waste Management, Vermont Department of Environmental Conservation, March 2016. Perfluorooctanoic acid (PFOA) Soil Screening Value.

^cScreening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl search).

 $\mu g/kg = micrograms per kilogram$

BRLTN = Burlington Air National Guard

J = reported concentration is an estimated value

ID = identification SD = sediment

bgs = below ground surface

U = analyte was not detected above the reported value

<u>Surface Water</u>

A surface water sample was also collected from the drainage ditch northeast of Building 60 at BRLTN03-003. PFBS was detected in the sample at an estimated concentration of 0.19 μ g/L, below the 400 μ g/L screening level. PFOA and PFOS were detected at an estimated combined concentration of 13.096 μ g/L, above the 0.02 μ g/L screening level. Analytical results are summarized in Table 16 and shown on Figure 13 in Appendix A.

		•) > ••••••••••••••••••••••••••••••••••
ĺ	Sample ID	BRLTN03-003-SW-001
l	Date Collected	04/18/17

Screening Level (µg/L)

400^a

 0.02^{b}

0.02^b

0.02^b

Table 16 Building 60 Current Fire Station (AFFF Area 3) Surface Water Analytical Results

Bold values indicate analyte detected at concentration indicated.

Shaded values indicate analyte exceeds screening criteria.

Analyte Perfluorobutane sulfonate (PFBS)

Perfluorooctanoic acid (PFOA)

Perfluorooctane sulfonate (PFOS)

^aEPA Regional Screening Levels for Residential Soil (November 2017) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2017)

^bVermont Department of Environmental Conservation, December 2016. Chapter 12 of the Environmental Protection Rules, "Groundwater Protection Rule and Strategy."

 $\mu g/L = micrograms per liter$

ID = identification

PFOS +PFOA

SW = surface water

BRLTN = Burlington Air National Guard

J = reported concentration is an estimated value

Result (µg/L)

0.19 J

0.096 J

13

13.096 J

3.3.5 Conclusions

At least one documented AFFF spill at the current fire station has resulted in a release of PFAS to the environment. Combined PFOA and PFOS concentrations were above screening levels in both groundwater samples and the surface water sample. The maximum combined PFOA and PFOS concentration was 66.97 μ g/L in groundwater and an estimated 13.096 μ g/L in surface water. PFOA and PFOS concentrations in soil and sediment were below screening levels, and PFBS was not detected above screening levels in any sampled media at AFFF Area 3.

3.4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4

3.4.1 Sample Locations

To assess possible PFAS impacts from the release of AFFF during annual firefighting equipment testing, four surface soil samples, four subsurface soil samples, and five groundwater samples (four primary and one duplicate) were collected. Surface soil and subsurface soil samples were collected from soil boring BRLTN04-001 on the upgradient side of the area (southwest of Taxiway F) and from BRLTN04-002, BRLTN04-003, and BRLTN04-004 on the downgradient side (northeast of Taxiway F). Groundwater samples were collected from each boring; however, because of access limitations on the airfield, grab samples were collected from SP16 drive point samplers rather than by installing temporary monitoring wells. Sample locations are shown on Figure 6 in Appendix A.

3.4.2 Lithology

The four soil borings completed at AFFF Area 4 were terminated at depths ranging from 15 to 20 feet bgs. Soils encountered in these borings included silty sand (USCS – SM), well-graded sand (USCS – SW), and poorly graded sand (USCS - SP). Detailed boring logs are included in Appendix C.

3.4.3 **Groundwater Flow**

Temporary monitoring wells could not be installed at AFFF Area 4 because of airfield access limitations; therefore, groundwater flow direction could not be determined during this sampling event. Area 4 boring logs indicate groundwater was detected between 10 and 14 feet bgs during drilling. Based on groundwater flow determinations at nearby AFFF Areas 2 and 3 on April 21, 2017, it is anticipated that groundwater at the testing area also flows to the northeast as shown on Figure 6 in Appendix A.

3.4.4 **Analytical Results**

Surface Soil

Four surface soil samples were collected from soil borings BRLTN04-001 through BRLTN04-004 at the fire department equipment test area. PFBS was not detected in the samples. PFOA was detected in three samples at concentrations ranging from an estimated $0.71 \,\mu g/kg$ to $1.8 \,\mu g/kg$. PFOS was detected in all four samples at estimated concentrations ranging from 4.3 µg/kg to 42 µg/kg. All PFBS, PFOA, and PFOS detections were below their respective screening levels, as summarized in Table 17 and shown on Figure 14 in Appendix A.

		BRLTN04-001-	BRLTN04-002-	BRLTN04-003-	BRLTN04-004-
	Sample ID	SS-001	SS-001	SS-001	SS-001
	Date Collected	04/20/17	04/20/17	04/20/17	04/20/17
	Depth (ft. bgs)	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Analyte	Screening Level (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)
Perfluorobutane sulfonate (PFBS)	1,300,000ª	0.53 UJ	0.60 UJ	0.60 U	0.53 UJ
Perfluorooctanoic acid (PFOA)	300 ^b	0.53 UJ	0.71 J	1.8	0.94 J
Perfluorooctane sulfonate (PFOS)	1,260°	4.3 J	42 J	36	18 J

Table 17 Fire Department Equipment Test Area (AFFF Area 4) Surface Soil Analytical Results

Bold values indicate analyte detected at concentration indicated.

^aEPA Regional Screening Levels (RSLs) for Residential Soil (November 2017) (https://www.epa.gov/risk/regional-screeninglevels-rsls-generic-tables-november-2017).

^bVose, Sarah. Memorandum to Chuck Schwer, March 2016. Perfluorooctanoic acid (PFOA) Soil Screening Value. ^cScreening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search). µg/kg = micrograms per kilogram bgs = below ground surface BRLTN = Burlington Air National Guard ft. = foot or feetJ = reported concentration is an estimated value ID = identification

SS = surface soil

U = analyte was not detected above the reported value

Subsurface Soil

Four subsurface soil samples were collected from soil borings BRLTN04-001 through BRLTN04-004. PFBS was not detected in the samples. PFOA was detected in one sample (at BRLTN04-002) at an

estimated concentration of 0.46 μ g/kg. PFOS was detected in three samples at concentrations ranging from an estimated 6.0 μ g/kg to 800 μ g/kg. All PFOA and PFOS detections were below their respective screening levels, as summarized in Table 18 and shown on Figure 14 in Appendix A.

	Sample ID	BRLTN04-001- SO-009	BRLTN04-002- SO-010	BRLTN04-003- SO-011	BRLTN04-004- SO-013
Ι	Date Collected	04/20/17	04/20/17	04/20/17	04/20/17
I	Depth (ft. bgs)	8 – 9	9 - 10	10 - 11	12 - 13
Analyte	Screening Level (μg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)
Perfluorobutane sulfonate (PFBS)	1,300,000ª	0.66 UJ	0.56 U	0.60 UJ	0.60 UJ
Perfluorooctanoic acid (PFOA)	300 ^b	0.66 UJ	0.46 J	0.60 UJ	0.60 UJ
Perfluorooctane sulfonate (PFOS)	1,260°	0.66 UJ	800	40 J	6.0 J

Table 18 Fire Department Equipment Test Area (AFFF Area 4) Subsurface Soil Analytical Results

Bold values indicate analyte detected at concentration indicated.

^aEPA Regional Screening Levels (RSLs) for Residential Soil (November 2017) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2017).

^bVose, Sarah. Memorandum to Chuck Schwer, March 2016. *Perfluorooctanoic acid (PFOA) Soil Screening Value*.

 $\label{eq:screening} \ensuremath{\mathsf{evel}}\xspace{\colored} \ensuremath{\mathsf{evel}}\xspace{\colored} \ensuremath{\mathsf{evel}}\xspace{\colored}\xspac$

 $\mu g/kg = micrograms per kilogram$

Soil Physiochemical Analyses

ft. = foot or feet

- bgs = below ground surface
- ID = identification
- J = reported concentration is an estimated value U = analyte was not detected above the reported value
- SO = subsurface soil

To provide basic soil parameter information, composite surface soil and subsurface soil samples were collected from AFFF Area 4 soil borings and submitted for pH, TOC, and grainsize analysis. The surface soil sample (BRLTN04-005-SS-001) was composed of equal aliquots of soil collected from borings BRLTN04-001 through BRLTN04-004 at 6 inches bgs. The subsurface soil sample (BRLTN04-005-SO-012) was composed of equal aliquots of soil collected from the same borings at depths ranging from 9 feet to 13 feet. Table F-1 summarizing the physiochemical data and supporting laboratory data sheets are included in Appendix F.

<u>Groundwater</u>

Four primary groundwater samples and one duplicate sample were also collected from soil borings BRLTN04-001 through BRLTN04-004 using an SP16 drive point sampler. PFBS was detected in all five samples at concentrations ranging from an estimated $0.0052 \ \mu g/L$ to $0.044 \ \mu g/L$, below the 400 $\mu g/L$ screening level. PFOA and PFOS were also detected in all five samples at combined concentrations ranging from an estimated $0.0641 \ \mu g/L$ to $0.322 \ \mu g/L$, above the $0.020 \ \mu g/L$ screening level. PFBS, PFOA, and PFOS analytical results are summarized in Table 19 and shown on Figure 15 in Appendix A.

3.4.5 Conclusions

Annual testing of fire equipment using AFFF has resulted in releases of PFAS to the environment at the test area on Taxiway F. Combined PFOA and PFOS concentrations exceeded the screening level in each of five samples collected (four primary and one duplicate) with a maximum concentration of $0.322 \mu g/L$. PFOA and PFOS concentrations in soil and sediment samples were below screening levels, and PFBS was not detected above screening levels in any sampled media at AFFF Area 4.

	-	4				BRLTN04-
		BRLTN04-	BRLTN04-	BRLTN04-	BRLTN04-	004-GW-918
	Sample ID	001-GW-013	002-GW-018	003-GW-018	004-GW-018	(dnp)
	Date Collected	04/20/17	04/20/17	04/20/17	04/20/17	04/20/17
	Depth (ft. bgs)	13	18	18	18	18
	Screening	Result	Result	Result	Result	Result
Analyte	Level (µg/L)	$(\mu g/L)$	$(\mu g/L)$	(μg/L)	$(\mu g/L)$	$(\mu g/L)$
Perfluorobutane sulfonate (PFBS)	400^{a}	0.013 J	0.0052 J	0.016 J	0.039	0.044
Perfluorooctanoic acid (PFOA)	0.02^{b}	0.084	f 1800.0	0.023	0.061	0.062
Perfluorooctane sulfonate (PFOS)	0.02^{b}	0.10	0.056	0.24	0.26	0.26
PFOS +PFOA	0.02^{b}	0.184	0.0641 J	0.263	0.321	0.322
Bold while indicate and steated at concentration indicated	centration indicated					

Table 19 Fire Department Equipment Test Area (AFFF Area 4) Groundwater Analytical Results

Bold values indicate analyte detected at concentration indicated.

Shaded values indicate analyte exceeds screening criteria.

^aEPA Regional Screening Levels for Residential Soil (November 2017) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2017). ^bVermont Department of Environmental Conservation, December 2016. Chapter 12 of the Environmental Protection Rules, "Groundwater Protection Rule and Strategy."

 $\mu g/L = micrograms per liter$

BRLTN = Burlington Air National Guard Base

ft. = foot or feet ID = identification

dup = field duplicate GW = groundwater

bgs = below ground surface

J = reported concentration is an estimated value

23

3.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5

3.5.1 Sample Locations

To assess possible PFAS impacts from the use of AFFF to extinguish an F-16 fire, four surface soil samples (three primary and one duplicate), four subsurface soil samples (three primary and one duplicate), and three groundwater samples (two primary and one duplicate) were collected. Surface soil and subsurface soil samples were collected from soil boring BRLTN05-001 on the upgradient side of the area (southwest of Runway 15/33) and from BRLTN05-002 and BRLTN05-003 on the downgradient side (northeast side of Runway 15/33). Groundwater samples were collected from borings BRLTN05-001 and BRLTN05-002, however, because of access limitations on the airfield, grab samples were collected using SP16 drive point samplers rather than temporary monitoring wells. A groundwater sample could not be collected from boring BRLTN05-003 because the boring refused at a depth of 28 feet before encountering groundwater. Sample locations are shown on Figure 7 in Appendix A.

3.5.2 Lithology

The three soil borings completed at AFFF Area 5 were terminated at depths ranging from 19 to 36 feet bgs. Soils encountered at these borings included silty sand (USCS – SM), well-graded sand (USCS – SW), poorly graded sand (USCS – SP), silty clay (USCS – CL), and silt (USCS – ML). Detailed boring logs are included in Appendix C.

3.5.3 Groundwater Flow

Temporary monitoring wells could not be installed at AFFF Area 5 because of airfield access limitations; therefore, groundwater flow direction could not be verified. Area 5 boring logs indicate groundwater was detected at 19 feet bgs at BRLTN05-001 and 36 feet in BRLTN05-002 during drilling. Based on groundwater level measurements collected in 2010 in other nearby areas (CH2MHill, March 2010), groundwater likely flows north/northeast as shown on Figure 7 in Appendix A.

3.5.4 Analytical Results

<u>Surface Soil</u>

Three primary surface soil samples and one duplicate sample were collected from soil borings BRLTN05-001 through BRLTN05-003 at AFFF Area 5. PFBS and PFOA were not detected in the samples. PFOS was detected in all four samples at estimated concentrations ranging from 0.78 μ g/kg to 2.7 μ g/kg, below the 1,260 μ g/kg screening level. PFBS, PFOA, and PFOS analytical results are summarized in Table 20 and shown on Figure 16 in Appendix A.

Subsurface Soil

Three primary subsurface soil samples and one duplicate sample were collected from soil borings BRLTN05-001 through BRLTN05-003. PFBS, PFOA, and PFOS were not detected in the samples. Subsurface soil analytical results are summarized in Table 21 and shown on Figure 16 in Appendix A.

		BRLTN05-001-	BRLTN05-001-	BRLTN05-002-	BRLTN05-003-
	Sample ID	SS-001	SS-901 (dup)	SS-001	SS-001
	Date Collected	04/19/17	04/19/17	04/19/17	04/19/17
	Depth (ft. bgs)	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
	Screening				
	Level	Result	Result	Result	Result
Analyte	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
Perfluorobutane	1,300,000ª	0.58 UJ	0.59 UJ	0.52 U	0.49 UJ
sulfonate (PFBS)	1,500,000	0.50 05	0.57 05	0.52 0	0.47 03
Perfluorooctanoic	300 ^b	0.58 U	0.59 UJ	0.52 U	0.49 UJ
acid (PFOA)	500°	0.38 0	0.39 01	0.32 0	0.49 UJ
Perfluorooctane	1.2000	0.70 1	0.07 1	1.2	271
sulfonate (PFOS)	1,260°	0.78 J	0.97 J	1.2	2.7 J

Table 20 F-16 Emergency Response (AFFF Area 5) Surface Soil Analytical Results

Bold values indicate analyte detected at concentration indicated.

^aEPA Regional Screening Levels for Residential Soil (November 2017) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2017).

^bVose, Sarah. Memorandum to Chuck Schwer, March 2016. Perfluorooctanoic acid (PFOA) Soil Screening Value.

^cScreening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search).

 $\mu g/kg = micrograms per kilogram$

BRLTN = Burlington Air National Guard Base

ft. = foot or feet

J = reported concentration is an estimated value

U = analyte was not detected above the reported value

bgs = below ground surface dup = field duplicate ID = identification

SS = surface soil

Table 21 F-16 Emergency Response (AFFF Area 5) Subsurface Soil Analytical Results

	Sample ID	BRLTN05-001- SO-014	BRLTN05-002- SO-028	BRLTN05-002- SO-928 (dup)	BRLTN05-003- SO-032
	Date Collected Depth (ft. bgs)	04/19/17 13 - 14	04/19/17 27 - 28	04/19/17 27 - 28	04/19/17 31 - 32
Analyte	Screening Level (μg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)	Result (µg/kg)
Perfluorobutane sulfonate (PFBS)	1,300,000ª	0.60 UJ	0.60 UJ	0.60 UJ	0.60 UJ
Perfluorooctanoic acid (PFOA)	300 ^b	0.60 UJ	0.60 UJ	0.60 UJ	0.60 UJ
Perfluorooctane sulfonate (PFOS)	1,260°	0.60 UJ	0.60 UJ	0.60 UJ	0.60 UJ

Bold values indicate analyte detected at concentration indicated.

^aEPA Regional Screening Levels (RSLs) for Residential Soil (November 2017) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2017).

^bVose, Sarah. Memorandum to Chuck Schwer, Director of Waste Management, Vermont Department of Environmental Conservation, March 2016. *Perfluorooctanoic acid (PFOA) Soil Screening Value*.

^cScreening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search).

e	e	· · ·	
$\mu g/kg = micrograms points p$	er kilogram		bgs = below ground surface
BRLTN = Burlington	Air National Guard Base		dup = field duplicate
ft. = foot or feet			ID = identification
J = reported concentrat	ion is an estimated value		SO = subsurface soil

U = analyte was not detected above the reported value.

Soil Physiochemical Analyses

To provide basic soil parameter information, composite surface soil and subsurface soil samples were collected from AFFF Area 5 soil borings and submitted for pH, TOC, and grainsize analysis. The surface soil sample (BRLTN05-004-SS-001) was composed of equal aliquots of soil collected from borings BRLTN05-001, BRLTN05-002, and BRLTN05-003 at 6 inches bgs. The subsurface soil sample

(BRLTN05-004-SO-024) was composed of equal aliquots of soil collected from the same borings at depths of 14 feet, 28 feet, and 32 feet, respectively. Table F-1 summarizing the physiochemical data and supporting laboratory data sheets are included in Appendix F.

Groundwater

Two primary groundwater samples and one duplicate sample were collected from soil borings BRLTN05-001 and BRLTN05-002 using a drive point sampler. PFBS was detected in all three samples at estimated concentrations ranging from 0.0062 μ g/L to 0.016 μ g/L, below the 400 μ g/L screening level. PFOA and PFOS were also detected in all three samples at estimated combined concentrations ranging from 0.028 μ g/L to 0.294 μ g/L, all above the 0.02 μ g/L screening level.

The analytical results for each of the three groundwater samples at AFFF Area 5 were qualified during the quality control process ("J flagged") by the validator, indicating estimated but usable data. PFOA and PFOS results for sample BRLTN05-001-GW-017 and BRLTN05-002-GW-933 were flagged because of low surrogate recoveries in laboratory control samples. The PFOA and PFOS results for sample BRLTN05-002-GW-033 were flagged because the results were below the limit of quantification (LOQ). Low surrogate recoveries indicate a potentially biased low result; however, the analytes were detected at concentrations above screening levels (either individually or when combined), indicating a release has occurred based on the reported concentrations. Similarly, when results were below the LOQ, the combined value also exceeded the screening level.

PFBS, PFOA, and PFOS groundwater analytical results are summarized in Table 22 and shown on Figure 17 in Appendix A.

				BRLTN05-
		BRLTN05-	BRLTN05-	002-GW-933
	001-GW-017	002-GW-033	(dup)	
	04/19/17	04/19/17	04/19/17	
	Depth (ft. bgs)	17	33	33
	Screening	Result	Result	Result
Analyte	Level (µg/L)	(µg/L)	(µg/L)	(µg/L)
Perfluorobutane sulfonate (PFBS)	400 ^a	0.0062 J	0.016 J	0.012 J
Perfluorooctanoic acid (PFOA)	0.02 ^b	0.054 J	0.017 J	0.021 J
Perfluorooctane sulfonate (PFOS)	0.02 ^b	0.24 J	0.011 J	0.020 J
PFOS +PFOA	0.02 ^b	0.294 J	0.028 J	0.041 J

Table 22 F-16 Emergency Response (AFFF Area 5) Groundwater Analytical Results

Bold values indicate analyte detected at concentration indicated.

Shaded values indicate analyte exceeds screening criteria.

^aEPA Regional Screening Levels for Residential Soil (November 2017) (https://www.epa.gov/risk/regional-screening-levels-rslsgeneric-tables-november-2017). ^bVermont Department of Environmental Conservation, December 2016. Chapter 12 of the Environmental Protection Rules,

"Groundwater Protection Rule and Strategy."

87	
$\mu g/L = micrograms per liter$	bgs = below ground surface
BRLTN = Burlington Air National Guard Base	dup = field duplicate
ft. = foot or feet	GW = groundwater
ID = identification	J = reported concentration is an estimated value

3.5.5 Conclusions

Use of AFFF during an F-16 emergency response has resulted in a release of PFAS to the environment near the cable arrest system on the runway. PFOA and PFOS concentrations in soil and sediment were below screening levels. Combined PFOA and PFOS concentrations exceeded the screening level in each of the three groundwater samples collected (two primary and one duplicate) with a maximum estimated concentration of 0.294 μ g/L. PFBS was not detected above screening levels in any sampled media at AFFF Area 5.

3.6 INVESTIGATION-DERIVED WASTE

3.6.1 Waste Soil

Waste soil generated during the installation of soil borings was placed in two Department of Transportation (DOT)-approved steel drums and staged at AFFF Area 1 for waste sampling and proper disposal. A representative sample was collected from the waste soil, submitted to the project laboratory, and analyzed for PFAS and Toxicity Characteristic Leaching Procedure (TCLP) for VOCs, SVOCs, pesticides, herbicides, metals, polychlorinated biphenyls, total petroleum hydrocarbons, flashpoint, corrosivity (pH), sulfide, and cyanide. The analytical results will be used to develop a waste profile and shipping manifest. Final disposal of investigation-derived waste (IDW) will be determined at that time. Waste manifests will be included in Appendix E.

3.6.2 Wastewater

Wastewater generated during groundwater sampling and decontamination activities was placed in one DOT-approved steel drum and staged at AFFF Area 1 for waste sampling and proper disposal. A representative sample was collected from the waste fluids and submitted to the project laboratory to be analyzed for PFAS and the full TCLP list. The analytical results will be used to develop a waste profile and shipping manifest. Final disposal of IDW will be determined at that time. Waste manifests will be included in Appendix E.

3.6.3 General Waste

General waste – such as paper, plastic, trash, and personal protective equipment – was placed in plastic garbage bags and placed in an on-site dumpster for disposal at an off-site Resource Conservation and Recovery Act Subtitle D industrial landfill.

4.0 GROUNDWATER PATHWAY

The objective of groundwater sampling during the SI was to determine if groundwater in the individual areas had been impacted by the release of AFFF and whether concentrations of PFBS, PFOA, and PFOS remain in groundwater at concentrations exceeding the calculated human health-based screening levels.

Burlington Air National Guard Base Hydrogeology

The uppermost water-bearing zone at Burlington ANG occurs under unconfined (water table) conditions in deltaic glaciofluvial sands and silts. This surficial water-bearing zone is underlain by a potentially confining to semiconfining lacustrine clay layer present across much of the Base. A second deeper water-bearing zone occurs within glacial till and the underlying limestone and marble bedrock of the Ordovician Bascom Formation bedrock. A generalized stratigraphic column is included as Figure 18 in Appendix A.

The vertical hydraulic gradient at the Base is generally downward and the till/bedrock aquifer appears to be connected hydraulically to the overlying surficial aquifer. Shallow groundwater generally flows to the northeast toward (and may discharge to) the Winooski River (Roy F. Weston, Inc., March 1986; Earth Technology, May 1991; HAZWRAP, August 1997; Parsons, June 2002; CH2MHill, March 2010; ANG,

December 2011). Slug testing conducted at IRP Site 1 (AFFF Area 1) has indicated hydraulic conductivities ranging from 0.056 feet per day (Earth Technology, May 1991) to 7.87 feet per day (Parsons, June 2002). Depths to groundwater in overburden wells vary from less than 5 feet to more than 60 feet bgs (CH2MHill, March 2010).

The bedrock surface in the vicinity of the Base is irregular and ranges from surface outcrops (off-Base north of AFFF Area 1) to more than 80 feet bgs (HAZWRAP, August 1997). Bedrock groundwater primarily occurs within the carbonate solution features, faults, and fractures. Local bedrock wells have water yields ranging from 6 to 40 gallons per minute. The Vermont Department of Water Resources has classified the bedrock groundwater in the area of Burlington ANG Base as Class III water resource suitable for domestic water supply, irrigation, agricultural use, and general industrial and commercial use. The Base and surrounding areas purchase potable water from the Champlain Water District, which obtains its public water supply from Lake Champlain. No groundwater supply wells are on the Base.

Although several drinking water wells, owned by either private or local government entities, were identified within a 4-mile radius of the approximate center point of the Base, none appear to be downgradient from the Base (CH2MHill, October 2015; Vermont Natural Resources, September 2017).

Six documented private bedrock water wells (Well Nos. 6, 58, 59, 93, 205, and 223) are within an approximate 1-mile radius of the center of the Base as shown on Figure 19 and in Table 23. Wells 58 and 59 are within ¹/₄ mile of the northern boundary of the Base (north of and sidegradient to AFFF Area 1). Well No. 58 is listed as a domestic well, and Well No. 59 is listed as an agricultural well in the Vermont Well Completion Searchable Database. Well No. 6 (listed as a domestic well in the database) is in a residential area southwest of the airport and approximately ¹/₂ mile southwest of (and upgradient from) the Base boundary. It is unknown if Well #6 is in use or how water from the well is used. The remaining wells (93, 205, and 223) are east of the Winooski River and are also listed as domestic wells in the database (Vermont Department of Conservation, October 2017; Vermont Agency of Natural Resources, September 2017). Groundwater flow in the area of these wells is expected to be to the south toward the Winooski River.

		Well	Casing	Depth to			
Well		Depth	Length	Bedrock	Well Yield	Screened	Year
Number	Well Type	(feet)	(feet)	(feet)	(gpm)	Interval	Completed
6	Domestic	158	111	100	4	Open hole	1968
58	Domestic	374	94	92	25	Open hole	1983
59	Agricultural	128	102	93	40	Open hole	1983
93	Domestic	143	69	64	7	Open hole	1975
205	Domestic	468	33	27	30	Open hole	1980
223	Domestic	243	68	61	6	Open hole	1981

Table 23 Summary of Private Wells within Approximately 1 Mile of Burlington ANG Base

Notes: Well data from available (post-1965) Vermont Department of Conservation water well completion reports. Listed wells are within an approximate 1-mile radius of the center of the Base.

gpm = gallons per minute

Wells #58 and #59 are on a dairy farm north of the Base and south of the Winooski River. Information provided by the Base indicates that VDEC personnel collected a water sample from a tap in a barn adjacent to the location shown by VDEC as Well #58. However, VDEC could not confirm the identification of the well sampled. Well #58 is classified as "domestic" in the database but is primarily used for agricultural purposes. The well identified as Well #59 (classified as "agricultural") could not be located and, according to the owner of the property, Well #59 does not exist, and there is no well at the location shown in the VDEC well database. Given these uncertainties, it is unclear which well (#58 or

#59) exists and was sampled. Preliminary unvalidated results for the sample collected by VDEC indicate elevated levels of PFOS; however, the final results for this sample are pending at the time of this report.

4.1 FORMER FIRE TRAINING AREA 1 (INSTALLATION RESTORATION PROGRAM SITE 1) – AFFF AREA 1

Shallow groundwater at FTA 1 flows to the northeast toward the Winooski River as shown on Figure 9 in Appendix A. Since installation of a groundwater collection trench in 2004 to address chlorinated VOCs (Parsons, August 2004), groundwater from FTA 1 has been collected in the trench and pumped to the WWTP. A pretreatment system was installed at FTA 1 in July 2017 by others to address PFOA and PFOS in groundwater (CH2MHill, June 2017). The previous permitted discharge to the WWTP was discontinued, and treated groundwater (below the Vermont enforcement standard of 0.02 μ g/L) was directed to an existing infiltration gallery at the site. Shallow groundwater downgradient of the trench, beyond the influence of the collection trench, flows to the northeast toward the Winooski River.

Analytical results show that combined PFOA and PFOS concentrations in all eight groundwater samples collected at AFFF Area 1 were above the 0.02 μ g/L screening level. PFOA and PFOS were detected in three groundwater samples collected at the source area at combined concentrations ranging from 5.7 μ g/L in sample BRLTN01-002-GW-015 to 72 μ g/L in sample BRLTN01-MW-BP3-012. PFOA and PFOS were also detected in three wells downgradient from the groundwater collection trench at combined concentrations ranging from 4.75 μ g/L in sample BRLTN01-MW102-011 to 21.4 μ g/L in duplicate sample BRLTN01-MW103-909. PFOA and PFOS were also detected in a sample collected from the collection trench sump (BRLTN01-TRENCHSUMP-001) at a concentration of 19.2 μ g/L.

No public water supply wells and no known domestic drinking water wells are downgradient from FTA 1 between the area and the Winooski River, the presumed groundwater discharge point. However, given that Well #58 (north and sidegradient from AFFF Area 1) has been impacted by PFAS, the groundwater pathway (for impacted groundwater from the Base) may be complete. In addition, PFAS-impacted groundwater may be discharging to the Winooski River. The river is approximately 1,200 feet northeast of the collection trench, and the nearest impacted monitoring well (MW-102 with a combined PFOA and PFOS concentration 4.75 μ g/L) is downgradient from the trench and approximately 750 feet southwest of the river.

4.2 BUILDING 90 FORMER FIRE STATION – AFFF AREA 2

Shallow groundwater at the former fire station flows to the east/northeast as shown on Figure 11 in Appendix A. As indicated on Figure 11 in Appendix A, PFOA and PFOS were detected in three groundwater samples above the 0.02 μ g/L screening level, at combined concentrations ranging from 9.48 μ g/L in sample BRLTN02-003-GW-032 to 54.5 μ g/L in sample BRLTN02-002-GW-029.

No public water supply wells and no known domestic drinking water wells are downgradient from the former fire station between the area and the Winooski River, the presumed groundwater discharge point. Therefore, there are no immediate human exposure risks from the presence of PFOA and PFOS in shallow groundwater, and the human ingestion pathway is incomplete. PFAS-impacted groundwater may, however, be discharging to the Winooski River, approximately 2,100 feet to the northeast.

4.3 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 3

Shallow groundwater at the current fire station flows to the east/northeast as shown on Figure 13 in Appendix A. Analytical results showed PFOA and PFOS were detected at combined concentrations above the 0.02 μ g/L screening level in two groundwater samples collected at the fire station. Combined PFOA and PFOS concentrations were 62 μ g/L in sample BRLTN03-001-GW-022 and 66.97 μ g/L in sample BRLTN03-002-GW-022.

No public water supply wells and no known domestic wells are downgradient from the current fire station between the area and the Winooski River, the presumed groundwater discharge point. Therefore, despite the presence of PFOA and PFOS in shallow groundwater, the human ingestion pathway is incomplete. PFAS-impacted groundwater may, however, be discharging to the Winooski River, approximately 2,200 feet to the northeast.

4.4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4

Shallow groundwater at the fire department equipment testing area flows to the northeast as shown on Figure 15 in Appendix A. Analytical results showed PFOA and PFOS were detected above the 0.02 μ g/L screening level in five groundwater samples collected at the equipment testing area at combined concentrations ranging from an estimated 0.0641 μ g/L in sample BRLTN04-002-GW-018 to 0.322 μ g/L in duplicate sample BRLTN04-004-GW-918.

No known domestic wells are downgradient from the fire department equipment testing area between the area and the Winooski River, the presumed groundwater discharge point. Therefore, despite the presence of PFOA and PFOS in shallow groundwater, the human ingestion pathway is incomplete. PFAS-impacted groundwater may, however, be discharging to the Winooski River, approximately 2,600 feet to the northeast.

4.5 F-16 Emergency Response Site – AFFF Area 5

Shallow groundwater at the F-16 emergency response site flows to the north as shown on Figure 17 in Appendix A. Analytical results showed PFOA and PFOS were detected above the 0.02 μ g/L screening level in three groundwater samples collected at the area at estimated combined concentrations ranging from 0.028 μ g/L in sample BRLTN05-002-GW-033 to 0.294 μ g/L in sample BRLTN05-001-GW-017.

No known domestic wells are directly downgradient from the F-16 emergency response site (between the site and the Winooski River to the north, the presumed groundwater discharge point). The nearest domestic well, Well #58, is approximately ½ mile northeast of Area 5 and down/side gradient of the area. Therefore, despite the presence of PFOA and PFOS in shallow groundwater, the human ingestion pathway is incomplete. PFAS-impacted groundwater may, however, be discharging to the Winooski River, approximately 4,100 feet to the north.

5.0 SURFACE WATER PATHWAY

The objective of surface water sampling during the SI was to determine if surface water in the individual areas had been impacted by the release of AFFF and whether concentrations of PFBS, PFOA, and PFOS remain in surface water at concentrations exceeding the calculated human health-based screening levels.

Surface water drainage at Burlington ANG Base occurs through numerous streams along the western and northern boundaries of the Burlington airport with predominant drainage northward to the Winooski

River. Muddy Brook flows along the eastern airport north boundary toward the Winooski River. Intermittent drainages may seasonally flow along the eastern airport boundary with discharge toward the Winooski River (ASL, August 2017). The PA (CH2MHill, October 2015) indicates surface water from each of the five AFFF areas ultimately discharges north toward the Winooski River.

The Winooski River empties into Lake Champlain, approximately 16 river miles downstream of the northwestern end of the Base. Although Lake Champlain is the primary source of drinking water for the Base and surrounding areas, there are no surface water intakes within 15 river miles downstream of the Base (Vermont Agency of Natural Resources, September 2017).

5.1 FORMER FIRE TRAINING AREA 1 (INSTALLATION RESTORATION PROGRAM SITE 1) – AFFF AREA 1

FTA 1 is relatively flat with both grassed and unvegetated bare areas. Surface runoff at FTA 1 occurs as sheet flow, primarily collecting in low areas or draining to the intermittent stream to the south and east. The intermittent stream channel is less than 2 feet wide and less than 0.5 feet deep and empties into a marshy area northeast of National Guard Avenue at Outfall SDO-002.

As shown on Figure 9 in Appendix A, one primary sample (BRLTN01-003-SW-001) and one duplicate surface water sample (BRLTN01-003-SW-901) were collected from the intermittent stream near Outfall SDO-002. PFOA and PFOS were detected above the 0.02 μ g/L screening level in both samples at combined concentration of 35.3 μ g/L and 38.4 μ g/L respectively.

Surface water from FTA 1 does not appear to be directly discharging to the Winooski River. Surface water may, however, be infiltrating shallow groundwater. Further delineation is needed to determine if impacted groundwater may be discharging to the river. However, because no surface water intakes are within 15 river miles downstream of the Base, the human ingestion pathway is incomplete.

5.2 BUILDING 90 FORMER FIRE STATION – AFFF AREA 2

The area surrounding Building 90 is a relatively flat grassed lawn area. Surface runoff from the area flows to stormwater inlets northeast and north of the building and discharges to an open drainage ditch on the south side of Mustang Pass, approximately 960 feet to the east/northeast. Flow from the ditch continues to the east/northeast toward Outfall SDO-001 and the Winooski River.

As indicated on Figure 11 in Appendix A, one surface water sample (BRLTN02-004-SW-001) collected from the drainage ditch on the south side of Mustang Pass and downstream from the site. PFOA and PFOS were detected above the 0.02 μ g/L screening level at a combined concentration of 0.081 μ g/L.

Surface water from Building 90 discharges to the Winooski River via Outfall SD0-001. In addition, discharge of PFOA- and PFOS-impacted groundwater to the river (though undetermined) is possible. However, because no surface water are intakes within 15 river miles downstream of the Base, the human ingestion pathway is incomplete.

5.3 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 3

The area surrounding Building 60 is a relatively flat lawn. Surface water runoff enters stormwater inlets southeast, northeast, and northwest of the building and discharges into the intermittent stream on the north side of NCO Drive. The intermittent stream flows along the southern limits of FTA 1 (which is northeast of Building 60) and empties into a marshy area northeast of National Guard Avenue at Outfall SDO-002.

As indicated on Figure 13 in Appendix A, one surface water sample (BRLTN03-003-SW-001) was collected from an intermittent stream downstream from the site. PFOA and PFOS were detected above the 0.02 μ g/L screening level at a combined concentration of 13.096 μ g/L.

Although surface water from the current fire station does not appear to be directly discharging to the Winooski River, surface water may be infiltrating the subsurface and impacting shallow groundwater. In addition, discharge of PFOA- and PFOS-impacted groundwater to the river (though undetermined), is possible. However, because no surface water are intakes within 15 river miles downstream of the Base, the human ingestion pathway is incomplete.

5.4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4

The fire department equipment testing area includes a section of Taxiway F and surrounding level grassed areas. No stormwater inlets, ditches, or standing water are near the test area. Any runoff from the area would largely occur as sheet flow and likely infiltrate into the ground surface. No surface water samples were collected at AFFF Area 4.

Although surface water was not present at the testing area, discharge of impacted groundwater to the river (though undetermined) is possible. However, because no surface water intakes are within 15 river miles downstream of the Base, the human ingestion pathway is incomplete.

5.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5

The F-16 emergency response site includes a section of Runway 15/33 and surrounding level grassed areas. No stormwater inlets, ditches, or standing water are near the emergency response site. Any runoff from the area would largely occur as sheet flow and likely infiltrate into the ground surface. No surface water samples were collected at AFFF Area 5.

Although surface water was not present at the testing area, discharge of impacted groundwater to the river (though undetermined) is possible. However, because no surface water intakes are within 15 river miles downstream of the Base, the human ingestion pathway is incomplete.

6.0 SOIL AND SEDIMENT EXPOSURE AND AIR PATHWAYS

The objective of soil sampling during the SI was to determine if soils in the individual areas had been impacted by the release of AFFF and whether concentrations of PFBS, PFOA, and PFOS remain in the soils exceeding the calculated human health-based screening levels.

6.1 FORMER FIRE TRAINING AREA 1 (INSTALLATION RESTORATION PROGRAM SITE 1) – AFFF AREA 1

Where detected, PFAS concentrations in subsurface soil samples and a sediment sample collected at former FTA 1 were below screening levels, as indicated on Tables 3 and 5. Lacking concentrations of PFAS above screening levels, the soil and air pathways are incomplete at AFFF Area 1. Surface soil was not sampled at FTA 1 because soil had been excavated from the area during a previous remediation effort.

6.2 BUILDING 90 FORMER FIRE STATION – AFFF AREA 2

Where detected, PFAS concentrations in surface soil, subsurface soil, and sediment samples collected at the former fire station site were below screening levels (see Tables 7, 8, and 10). Lacking concentrations of PFAS above screening levels, the soil and air pathways are incomplete at AFFF Area 2.

6.3 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 3

Where detected, PFAS concentrations in surface soil, subsurface soil, and the sediment sample collected at the current fire station site were below screening levels (see Tables 12, 13, and 15). Lacking concentrations of PFAS above screening levels, the soil and air pathways are incomplete at AFFF Area 3.

6.4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4

Where detected, PFAS concentrations in surface soil and subsurface soil samples collected at the fire department equipment testing area were below screening levels (see Tables 17 and 18). Lacking concentrations of PFAS above screening levels, the soil and air pathways are incomplete at AFFF Area 4.

6.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5

Where detected, PFAS concentrations in surface soil and subsurface soil samples collected at the emergency response site were below screening levels (see Tables 20 and 21). Lacking concentrations of PFAS above screening levels, the soil and air pathways are incomplete at AFFF Area 4.

7.0 UPDATES TO CONCEPTUAL SITE MODELS

The following sections contain updates to the conceptual site models for AFFF Areas 1 through 5 and address PFOA and PFOS in soil, groundwater, surface water, and sediment. PFBS was not detected above screening levels in any sampled media and will not be discussed further.

7.1 FORMER FIRE TRAINING AREA 1 (INSTALLATION RESTORATION PROGRAM SITE 1) – AFFF AREA 1

The QAPP addendum (ASL, August 2017) identified subsurface soil, groundwater, sediment, and surface water as media potentially impacted by previous releases of AFFF at FTA 1. As indicated in Sections 3.1.4 and 6.1, PFOA and PFOS concentrations in subsurface soil and sediment (where detected) were below screening levels and do not represent a complete human exposure pathway.

PFOA/PFAS concentrations in groundwater and surface water however, exceeded screening levels, as indicated in Section 3.1.4. Although there are no drinking water wells between AFFF Area 1 and the Winooski River, Well #58 (north and sidegradient from AFFF Area 1) has been impacted by PFAS. As indicated in Section 4.1, the groundwater pathway (for impacted groundwater from the Base) may be complete.

Although PFOA- and PFOS-impacted surface water from FTA 1 does not appear to be directly discharging to the Winooski River, infiltration of surface water to shallow groundwater is possible. Further delineation is needed to determine if impacted groundwater from FTA 1 is discharging to the river. However, because no surface water intakes are within 15 river miles downstream of the Base, the ingestion pathway is also incomplete for surface water, as indicated in Section 5.1.

7.2 BUILDING 90 FORMER FIRE STATION – AFFF AREA 2

The QAPP addendum identified surface soil, subsurface soil, groundwater, sediment, and surface water as media potentially impacted by previous releases of AFFF at the former fire station. As indicated in Sections 3.2.4 and 6.2, PFOA/PFAS concentrations in subsurface soil and sediment (where detected) were below screening levels and do not represent a complete human exposure pathway.

PFOA and PFOS concentrations in groundwater and surface water, however, exceeded screening levels, as indicated in Section 3.2.4. The human ingestion pathway for groundwater is incomplete, as indicated in Section 4.2.

PFOA- and PFOS-impacted surface water from Building 90 eventually discharges to the Winooski River via Outfall SD0-001 and impacted groundwater may also be discharging to the river. However, because no surface water intakes are within 15 river miles downstream of the Base, the ingestion pathway is also incomplete for surface water, as indicated in Section 5.2.

7.3 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 3

The QAPP addendum identified surface soil, subsurface soil, groundwater, sediment, and surface water as media potentially impacted by previous releases of AFFF at the current fire station. As indicated in Sections 3.3.4 and 6.3, PFOA/PFAS concentrations in surface soil, subsurface soil, and sediment (where detected) were below screening levels and do not represent a complete human exposure pathway.

PFOA/PFAS concentrations in groundwater and surface water, however, exceeded screening levels, as indicated in Section 3.3.4. The human ingestion pathway for groundwater is incomplete, as indicated in Section 4.3.

Although surface water from the current fire station does not appear to be directly discharging to the Winooski River, surface water may be infiltrating the subsurface and impacting shallow groundwater. Further delineation is needed to determine if impacted groundwater is discharging to the river. However, because no surface water intakes are within 15 river miles downstream of the Base, the ingestion pathway is also incomplete for surface water, as indicated in Section 5.3.

7.4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4

The QAPP addendum identified surface soil, subsurface soil, and groundwater as media potentially impacted by previous releases of AFFF at the fire department equipment training area. As indicated in Sections 3.4.4 and 6.4, PFOA/PFAS concentrations in surface soil and subsurface soil (where detected) were below screening levels and do not represent a complete human exposure pathway. Surface water was not present at or near AFFF Area 4.

PFOA/PFAS concentrations in groundwater, however, exceeded screening levels as indicated in Section 3.4.4. The human ingestion pathway for groundwater is incomplete, as indicated in Section 4.4.

Impacted groundwater may also be discharging to the river. However, because no surface water intakes are within 15 river miles downstream of the Base, the ingestion pathway is also incomplete for surface water, as indicated in Section 5.4.

7.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5

The QAPP addendum identified surface soil, subsurface soil, and groundwater as media potentially impacted by previous releases of AFFF at the F-16 emergency response site. As indicated in Sections 3.5.4 and 6.5, PFOA/PFAS concentrations in surface soil and subsurface soil (where detected) were below screening levels and do not represent a complete human exposure pathway. Surface water was not present at or near AFFF Area 5. PFOA/PFAS concentrations in groundwater, however, exceeded screening levels, as indicated in Section 3.5.4. The human ingestion pathway for groundwater is incomplete, as indicated in Section 4.5.

Impacted groundwater may also be discharging to the river. However, because no surface water intakes are within 15 river miles downstream of the Base, the ingestion pathway is also incomplete for surface water as indicated in Section 5.5.

8.0 SUMMARY AND CONCLUSIONS

ASL completed SIs at five known or suspected areas of AFFF releases at Burlington ANG Base as documented in the PA (CH2M HILL, October 2015) and as detailed in the subsequent site-specific QAPP addendum (ASL, February 2017). The areas inspected were

- Former FTA 1 (IRP Site 1) (AFFF Area 1),
- Building 90 Former Fire Station (AFFF Area 2),
- Building 60 Current Fire Station (AFFF Area 3),
- Fire Department Equipment Testing Area (AFFF Area 4), and
- F-16 Emergency Response Site (AFFF Area 5).

All fieldwork was conducted in accordance with the site-specific QAPP addendum (ASL, February 2017) with the following exceptions:

- At AFFF Area 1, existing monitoring well V1-MW-14L was sampled in lieu of planned existing well MW-104, which could not be sampled because of a blockage in the well.
- Temporary monitoring wells could not be installed at AFFF Areas 4 and 5 because of airfield access limitations. Groundwater samples were collected using drive point samplers.

Selected sample media varied for the five sites but included surface soil, subsurface soil, groundwater, sediment, and surface water. Sampling was primarily limited to the immediate areas of known or suspected AFFF releases and biased toward locations most likely to have been impacted by the releases. All samples were analyzed for PFBS, PFOA, and PFOS using modified EPA Method 537. Analytical results for PFBS in soil and sediment were compared to published EPA RSLs. Analytical results for PFOS in soil and sediment were compared to the calculated RSL of 1,260 μ g/kg. Analytical results for PFBS in groundwater and surface water were compared to the published EPA RSL. Analytical results for PFBS in groundwater and surface water were compared to the PVDH screening level of 300 μ g/kg. Analytical results for PFOA and PFOS in groundwater and surface water were compared to the Vermont Groundwater Enforcement Standard of 0.02 μ g/L (for the combined concentrations of PFOA and PFOS).

AFFF use at the Base has resulted in PFOA and PFOS concentrations in groundwater and surface water above screening levels; however, no potential receptor pathways with immediate impacts to human health were identified. Although no immediate impacts were identified, further assessment of PFOA and PFOS impacts at each of the AFFF areas (via expanded SI or remedial investigation [RI]) may be warranted. Table 23 summarizes detected concentrations of PFBS, PFOA, and PFOS for each media sampled at each area. Summarizes of key findings and conclusions for each area (focusing on PFOA and PFOS exceedances) are included in Sections 8.1 through 8.5.

AFFF Area	Associated Existing IRP ID	Parameter	Maximum Detected Concentration	Screening Level	Number of Samples / Number of Exceedances	Exceeds Screening Level
AITTAICa		Subsurface Soil	(µg/kg)	(µg/kg)	Exceduances	Lever
		PFBS	ND	1,300,000	3/0	No
		PFOA	25	300	3/0	No
		PFOS	1,200 J	1,260	3/0	No
		Groundwater	(µg/L)	(µg/L)	5/0	110
		PFBS	3.4	400	9/0	No
		PFOA	41	0.02	9/9	Yes
AFFF Area 1 Former FTA 1		PFOS	31	0.02	9/9	Yes
		PFOA + PFOS	72	0.02	9/9	Yes
Former FTA 1	Site 1	Sediment	(µg/kg)	(µg/kg))/)	103
		PFBS	1.3	1,300,000	2/0	No
		PFOA	2.2	300	2/0	No
		PFOS	180	1,260	2/0	No
		Surface Water	(µg/L)	(µg/L)	210	110
		PFBS	2.0	400	2/0	No
		PFOA	1.4	0.02	2/0	Yes
		PFOS	37	0.02	2/2	Yes
		PFOA + PFOS	38.4	0.02	2/2	Yes
		Surface Soil	(μg/kg)	(μg/kg)	212	1 05
		PFBS	0.28 J	1,300,000	4/0	No
		PFOA	0.28 J	300	4/0	No
		PFOS	31 J	1,260	4/0	No
		Subsurface Soil	(μg/kg)	(µg/kg)	4/0	110
		PFBS	ND	1,300,000	3/0	No
		PFOA	7.8 J	300	3/0	No
		PFOS	160	1,260	3/0	No
		Groundwater	(µg/L)	(µg/L)	5/0	110
AFFF Area 2		PFBS	0.47	400	3/0	No
Building 90	None	PFOA	0.50	0.02	3/3	Yes
Former Fire	(New	PFOS	54	0.02	3/3	Yes
Station	Area)	PFOA + PFOS	54.5	0.02	3/3	Yes
Station		Sediment	(μg/kg)	(μg/kg)	515	1 (3
		PFBS	ND	1,300,000	1/0	No
		PFOA	ND	300	1/0	No
		PFOS	2.3	1,260	1/0	No
		Surface Water	(µg/L)	(µg/L)	1/0	110
		PFBS	0.035	400	1/0	No
		PFOA	ND	0.02	1/0	No
		PFOS	0.081	0.02	1/1	Yes
		PFOA + PFOS	0.081	0.02	1/1	Yes
		Surface Soil	(μg/kg)	(µg/kg)	1/1	1 05
		PFBS	0.71 J	1,300,000	2/0	No
AFFF Area 3		PFOA	1.5 J	300	2/0	No
Building 60	None	PFOS	280	1,260	2/0	No
Current Fire	(New	Subsurface Soil	(μg/kg)	(µg/kg)	2.0	110
Station	Area)	PFBS	0.49 J	1,300,000	2/0	No
~******		PFOA	1.0	300	2/0	No
		PFOS	140	1,260	2/0	No

Table 24 Summary of PFBS, PFOA, and PFOS Detections and Screening Level Exceedances¹

AFFF Area	Associated Existing IRP ID	Parameter	Maximum Detected Concentration	Screening Level	Number of Samples / Number of Exceedances	Exceeds Screening Level
AFFF Alea		Groundwater	(µg/L)	(µg/L)	Exceedances	Level
		PFBS	2.5	400	2/0	No
		PFOA	2.0	0.02	2/0	Yes
		PFOS	66	0.02	2/2	Yes
		PFOA + PFOS	66.97 ²	0.02	2/2	Yes
		Sediment	(μg/kg)	(μg/kg)		1 05
		PFBS	0.43 J	1,300,000	1/0	No
		PFOA	ND	300	1/0	No
		PFOS	63	1,260	1/0	No
		Surface Water	(µg/L)	(µg/L)	1/0	110
		PFBS	0.19 J	400	1/0	No
		PFOA	0.19 J	0.02	1/0	Yes
		PFOS	13	0.02	1/1	Yes
		PFOA + PFOS	13.096 J	0.02	1/1	Yes
		Surface Soil	(μg/kg)	(µg/kg)	1/1	1 05
		PFBS	ND	1,300,000	4/0	No
		PFOA	1.8	300	4/0	No
		PFOS	42 J	1,260	4/0	No
		Subsurface Soil		,	4/0	INU
AFFF Area 4 Fire	None	PFBS	(µg/kg) ND	(μg/kg) 1,300,000	4/0	No
Department	(New	PFOA	0.46 J	300	4/0	No
Equipment	(New Area)	PFOS	800	1,260	4/0	No
Testing Area	Altaj	Groundwater		,	4/0	110
I toting AI ta		PFBS	(μg/L) 0.044	(μg/L) 400	5/0	No
		PFOA	0.044	0.02	5/4	Yes
		PFOS	0.084	0.02	5/5	Yes
		PFOA + PFOS	0.20	0.02	5/5	Yes
		Surface Soil			57.5	res
		PFBS	(µg/kg) ND	(μg/kg) 1,300,000	4/0	No
		PFOA	ND	300	4/0	No
		PFOS	2.7 J	1,260	4/0	No
		Subsurface Soil		,	4/0	110
AFFF Area 5	Nerra	PFBS	(μg/kg) ND	(µg/kg) 1,300,000	4/0	No
F-16	None (New	PF0A	ND ND	300	4/0	No
Emergency	(New Area)	PFOS	ND	1,260	4/0	No
Response Site	Area			-	4/0	INU
		Groundwater PFBS	(μg/L) 0.016 J	(μg/L) 400	3/0	No
		PFBS PFOA		0.02	3/0	
		PFOS	0.054 J	0.02	3/2 3/1	Yes
			0.24 J			Yes
I In aludaa dumliaat		PFOA + PFOS	0.294 J	0.02	3/3	Yes

¹ Includes duplicate and resample results.

² Maximum PFOA + PFOS concentration shown is the highest combined PFOA and PFOS concentration detected in a specific groundwater sample and in this instance is not the sum of the individual maximum PFOA and PFOS concentrations listed as they occurred in two separate samples.

Bold values exceed screening levels.

 $\mu g/L = micrograms per liter$

AFFF = aqueous film forming foam

ID = identification

J = estimated concentration

PFBS = perfluorobutane sulfonate

PFOS = perfluorooctane sulfonate

μg/kg = micrograms per kilogram FTA = fire training area IRP = Installation Restoration Program ND = not detected PFOA = perfluorooctanoic acid

8.1 FORMER FIRE TRAINING AREA 1 (INSTALLATION RESTORATION PROGRAM SITE 1) – AFFF AREA 1

Use of AFFF at FTA 1 between 1970 and 1980 has resulted in PFAS impacts to groundwater above screening levels. Although no public water supply wells and no known domestic wells (drinking water or irrigation) are downgradient from the area, Well #58 (north and sidegradient from FTA 1) has been impacted by PFAS and may represent a complete pathway for impacted groundwater from the Base. Further, although discharge of impacted groundwater to the Winooski River north of the Base is possible, the nearest surface water intake is more than 15 miles downstream.

In addition, a modification to the current groundwater collection system at FTA 1 to treat PFOA and PFOS has been installed by others (CH2MHill, June 2017). Groundwater from the collection trench is treated by routing it through two GAC vessels. Treated groundwater is pumped to infiltration trenches constructed at the site.

8.2 BUILDING 90 FORMER FIRE STATION – AFFF AREA 2

Although releases of AFFF at the former fire station have resulted in PFOA and PFOS in groundwater above screening levels, no complete human receptor pathways have been identified at the former fire station. No public water supply wells and no known domestic wells (drinking water or irrigation) are downgradient from the area. Further, although discharge of impacted groundwater to the Winooski River is possible, the nearest surface water intake is more than 15 miles downstream.

8.3 BUILDING 60 CURRENT FIRE STATION – AFFF AREA 3

Although releases of AFFF at the current fire station have resulted in PFOA and PFOS in groundwater above screening levels, no complete human receptor pathways have been identified at the current fire station. No public water supply wells and no known domestic wells (drinking water or irrigation) are downgradient from the area. Further, although discharge of impacted groundwater to the Winooski River is possible, the nearest surface water intake is more than 15 miles downstream.

8.4 FIRE DEPARTMENT EQUIPMENT TESTING AREA – AFFF AREA 4

Although releases of AFFF at the fire department equipment testing area have resulted in PFOA and PFOS to groundwater above screening levels, no complete human receptor pathways have been identified at the spray test area. No public water supply wells and no known domestic wells (drinking water or irrigation) are downgradient from the area. Although discharge of impacted groundwater to the Winooski River is possible, the nearest surface water intake is more than 15 miles downstream.

8.5 F-16 EMERGENCY RESPONSE SITE – AFFF AREA 5

Although release of AFFF at the F-16 emergency response site has resulted in PFOA and PFOS in groundwater above screening levels, no complete human receptor pathways have been identified at the emergency response site. No public water supply wells and no known domestic wells (drinking water or irrigation) are downgradient from the area. Further, although discharge of impacted groundwater to the Winooski River is possible, the nearest surface water intake is more than 15 miles downstream.

9.0 REFERENCES

Aerostar SES LLC (ASL), January 2016. Final Uniform Federal Policy (UFP) Quality Assurance Project Plan (QAPP) for Site Inspections of Fire Fighting Foam Usage at Various Air Force Bases in the United States.

ASL, February 2017. Draft Final Uniform Federal Policy (UFP) Quality Assurance Project Plan (QAPP) for Site Inspections of Fire Fighting Foam Usage at Various Air Force Bases in the Eastern United States Addendum 14 Field Sampling Plan for Vermont Air National Guard Base, Chittenden County, Vermont.

ASL, August 2017. Final Uniform Federal Policy (UFP) Quality Assurance Project Plan (QAPP) for Site Inspections of Fire Fighting Foam Usage at Various Air Force Bases in the Eastern United States Addendum 14 Field Sampling Plan for Vermont Air National Guard Base, Chittenden County, Vermont.

Air National Guard, December 2011. Final Record of Decision, Sites 1, 2, 3, 4, 5A, and 5B. Prepared for 158th Fighter Wing, Vermont Air National Guard, South Burlington, Vermont.

CH2M HILL, October 2015. Final Preliminary Assessment Report for Perfluorinated Compounds at Vermont Air National Guard, South Burlington, Vermont.

CH2M HILL, March 2010. Final Remedial Investigation Report – Sites 1, 2, 3, 4, 5A, and 5B, 158th Fighter Wing, Vermont Air National Guard Burlington Air National Guard Base, South Burlington, Vermont.

CH2MHill. Technical Memorandum to ANG Headquarters, NGB/A7OR, June 2012. Soil Removal Activity at Site 4, Vermont Air National Guard Base, South Burlington, Vermont.

CH2M Hill, June 2017. Final Remedial Action Work Plan Addendum 3 for Site 1, 158th Fighter Wing, Vermont Air National Guard Base, South Burlington, Vermont.

The Earth Technology Corporation, May 1991. Installation Restoration Program, Remedial Investigation/Feasibility Study, Final Technical Report, Volume 1.

Environmental Protection Agency (EPA), March 2012. Uniform Federal Policy for Quality Assurance Project Plans Workbook.

EPA, May 2016a. "Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS)."

EPA, May 2016b. "Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA)."

EPA, June 2016. Trip Report for Water Sampling, Vermont Air National Guard.

EPA, November 2017. Regional Screening Levels (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2017).

Hazardous Waste Remedial Actions Program (HAZWRAP), August 1997. Installation Restoration Program Final Supplemental Remediation Investigation Report Sites 1 and 2, Volume 1, 158th Fighter Wing Vermont Air National Guard, South Burlington, Vermont.

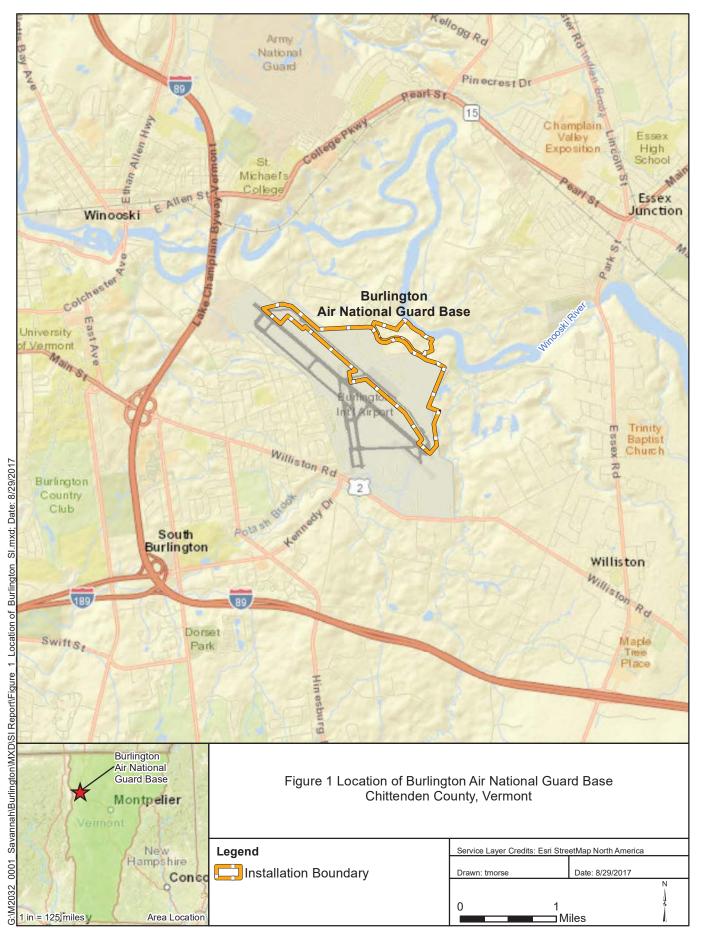
H&S/Nobis Environmental JV, LLC, June 2016. *Trip Report for Water Sampling Vermont Air National Guard, South Burlington, Vermont.*

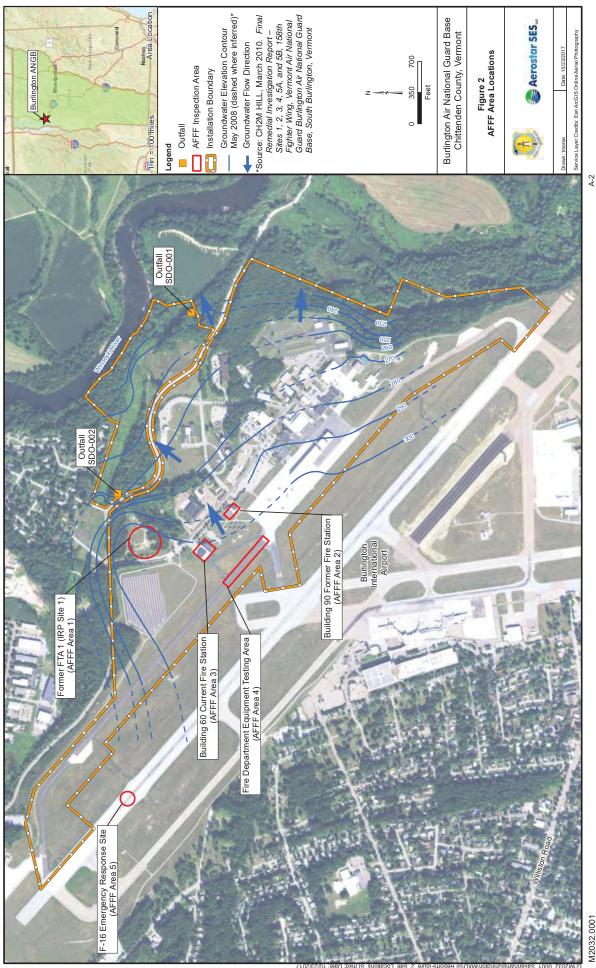
Parsons, Inc., June 2002. Technical Memorandum Time-Critical Removal Action at Installation Restoration Program Site 1, Vermont Air National Guard, South Burlington, Vermont. Parsons, Inc., August 2004. Operation, Maintenance and Monitoring Plan for the Groundwater Collection System at Site 1, 158th FW, Vermont Air National Guard, South Burlington, Vermont.

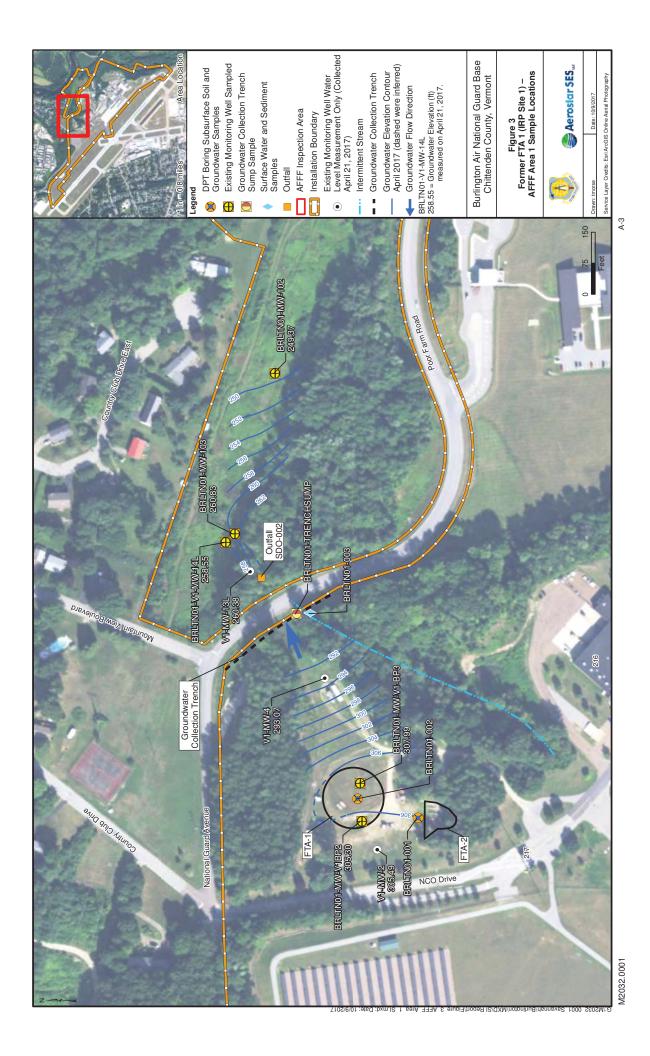
Roy F., Weston, Inc. (Weston), March 1986. Installation Restoration Program Phase II -Confirmation/Quantification Stage 1, Final Report for Burlington Air National Guard Base, Vermont.

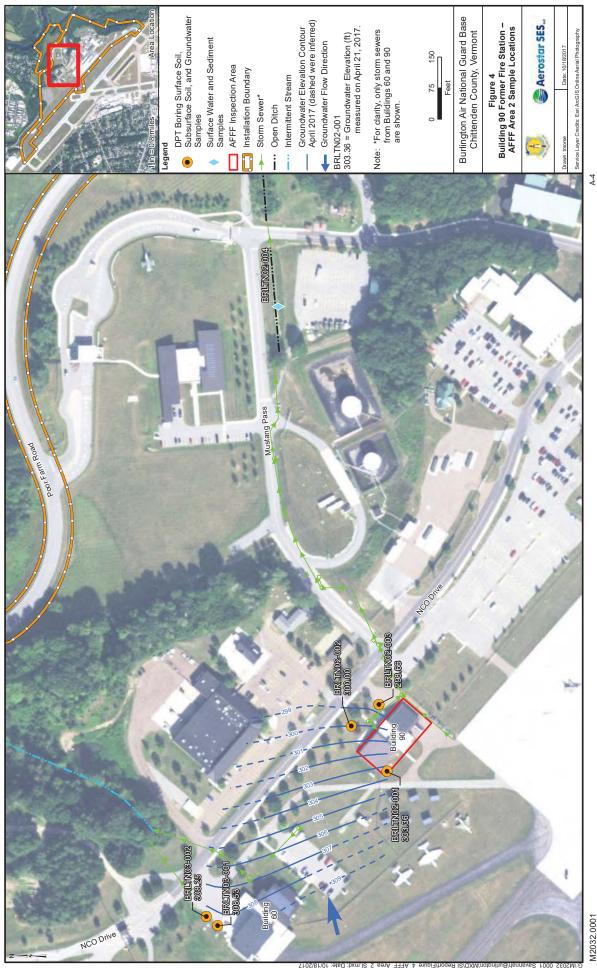
United States Army Corps of Engineers, February 2016. "Performance Work Statement for Site Investigations of Fire Fighting Foam Usage at Various Air Force Bases in the Eastern United States."

United States Air Force, August 2012. Interim AF Guidance on Sampling and Response Actions for Perfluorinated Compounds at Active and BRAC Installations.

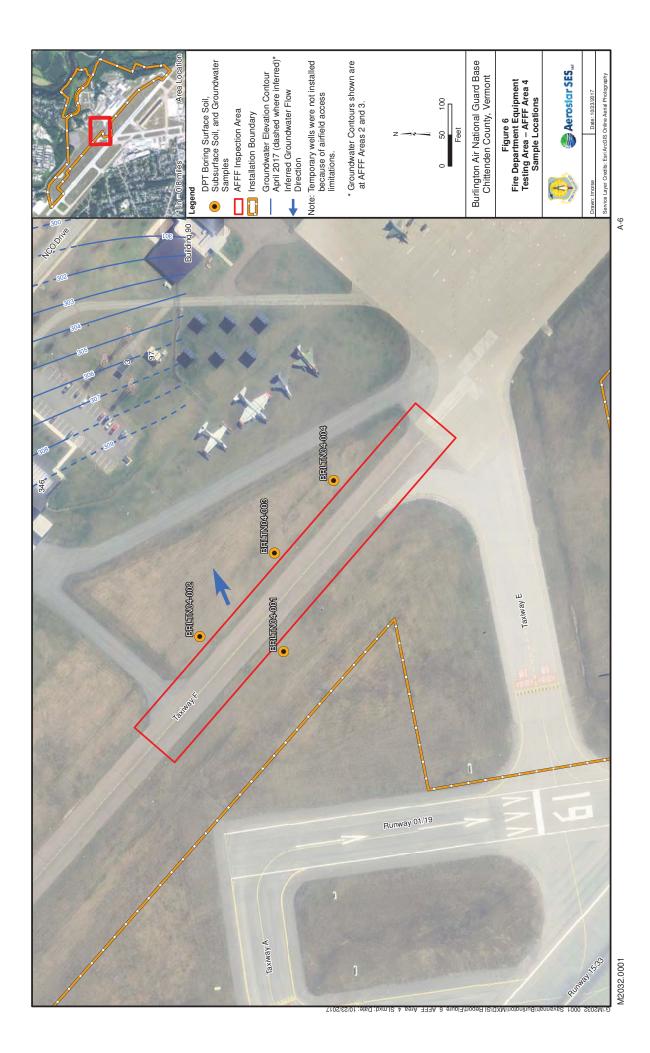

Vermont Department of Environmental Conservation, December 2016. *Chapter 12 of the Environmental Protection Rules, "Groundwater Protection Rule and Strategy."*

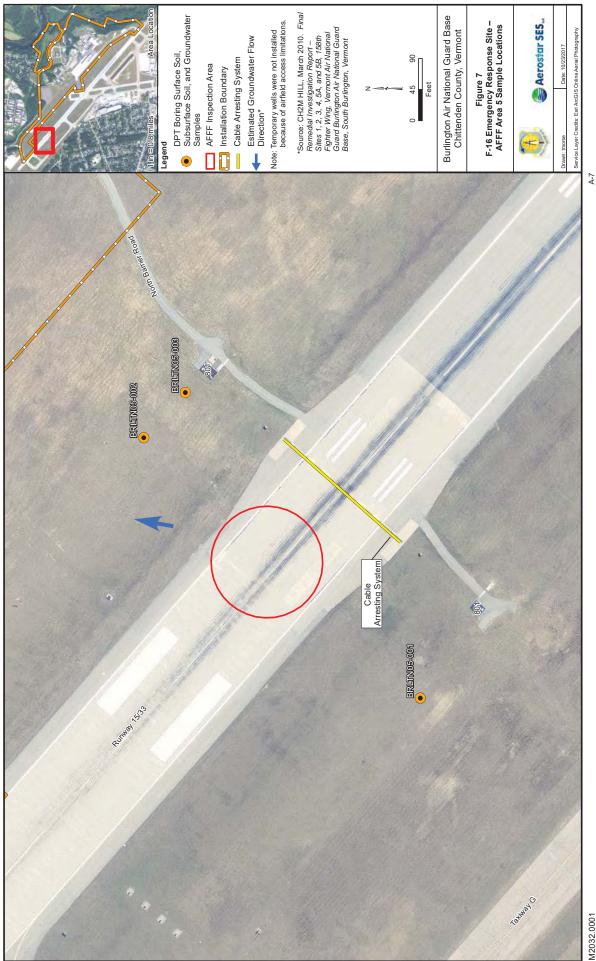

Vose, Sarah. Memorandum to Chuck Schwer, March 2016. Perfluorooctanoic acid (PFOA) Soil Screening Value.

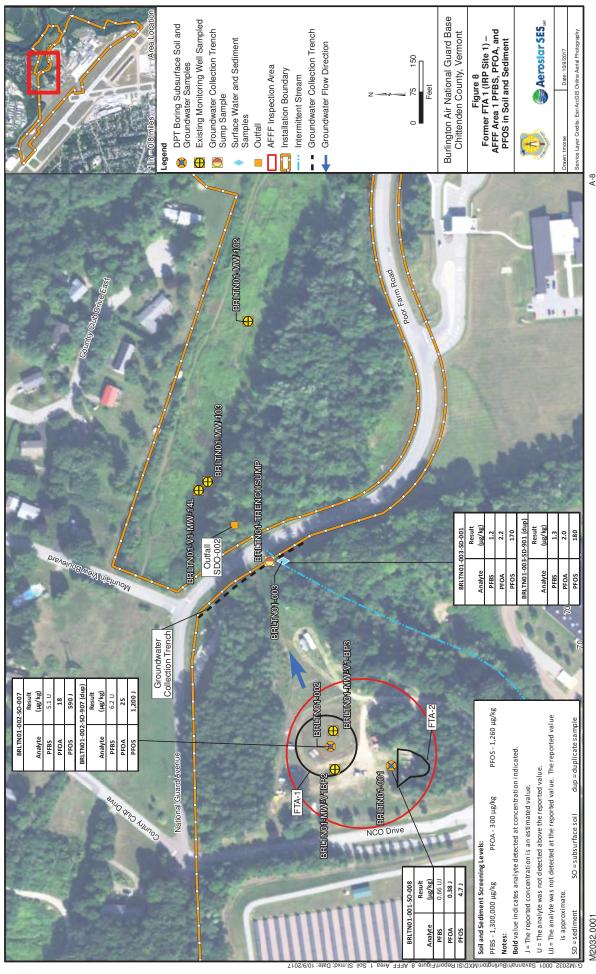

Vermont Agency of Natural Resources, 2015. Well Completion Report Searchable Database (http://dec.vermont.gov/water/databases/well-completion-reports)

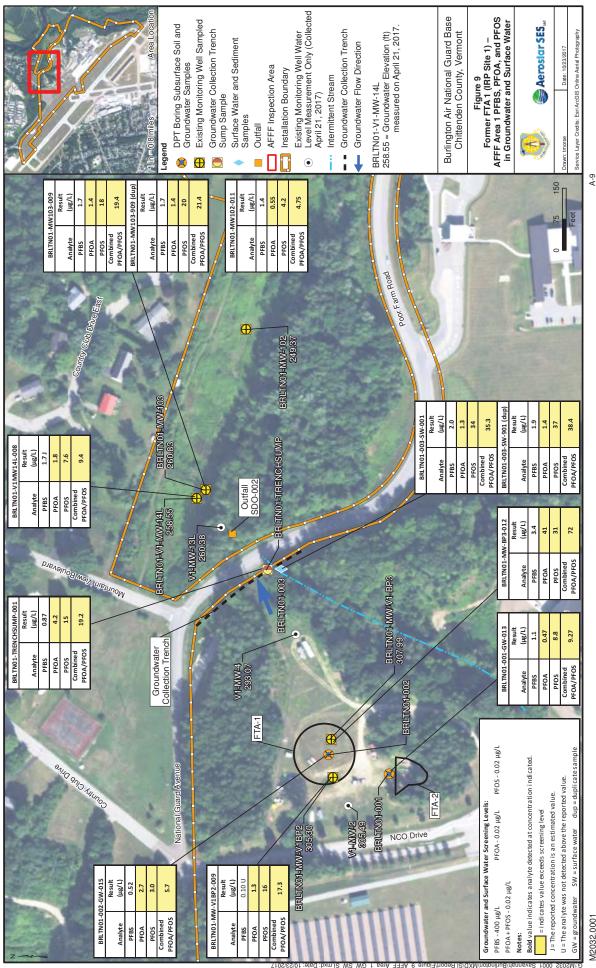

Vermont Agency of Natural Resources, September 2017. Natural Resources Atlas (http://anr.vermont.gov/maps/nr-atlas) (Accessed September 11, 2017)

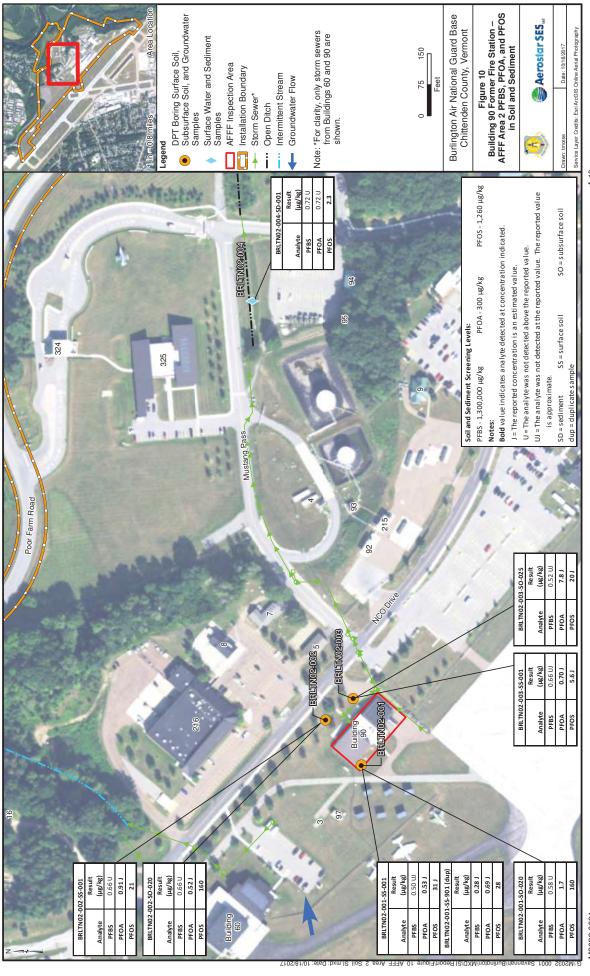
Appendix A Figures

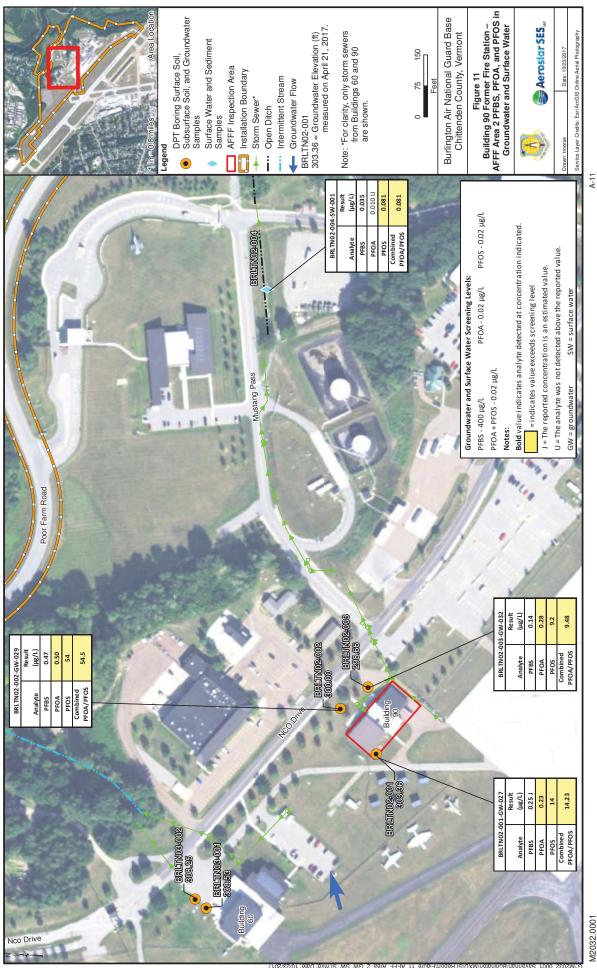


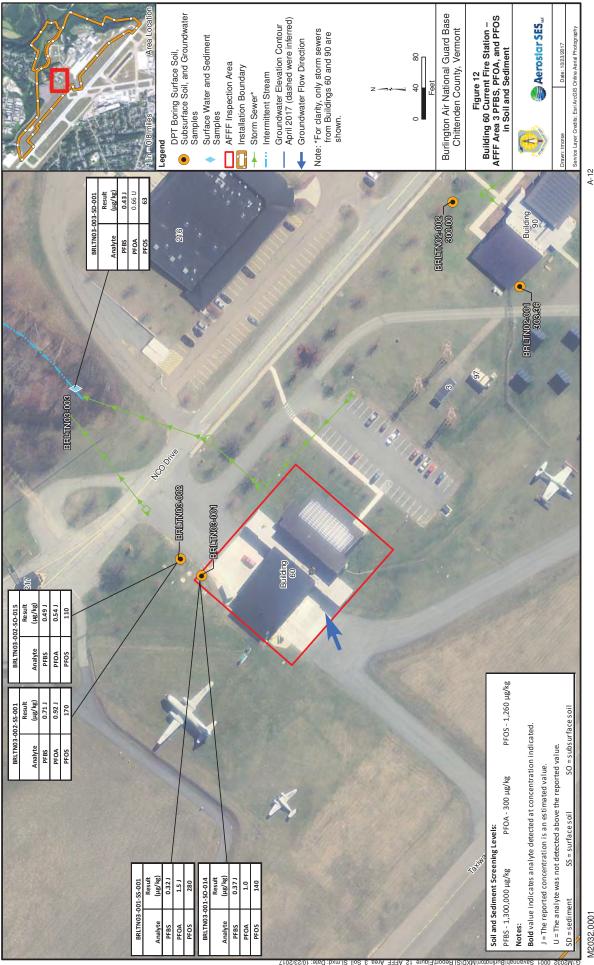


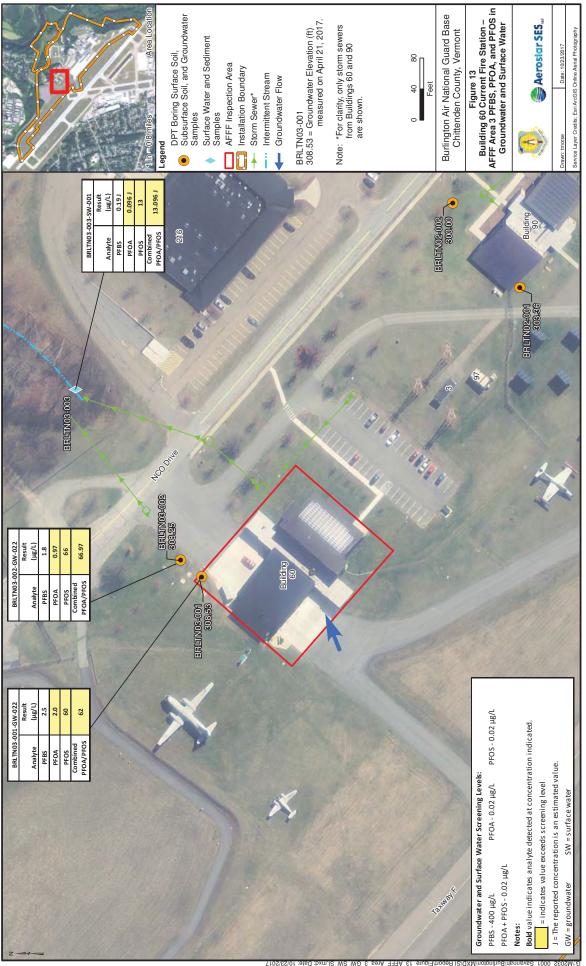



A-5

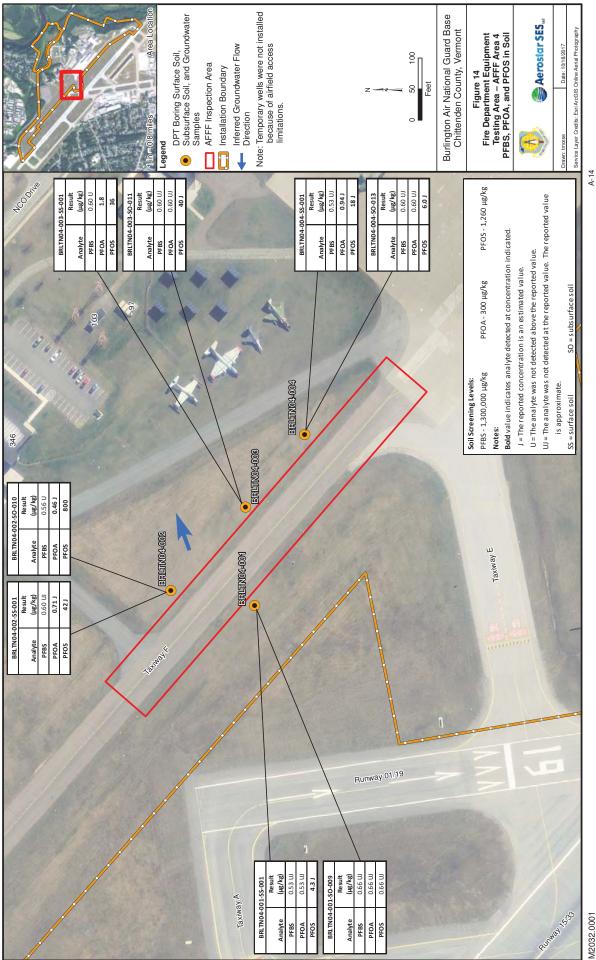


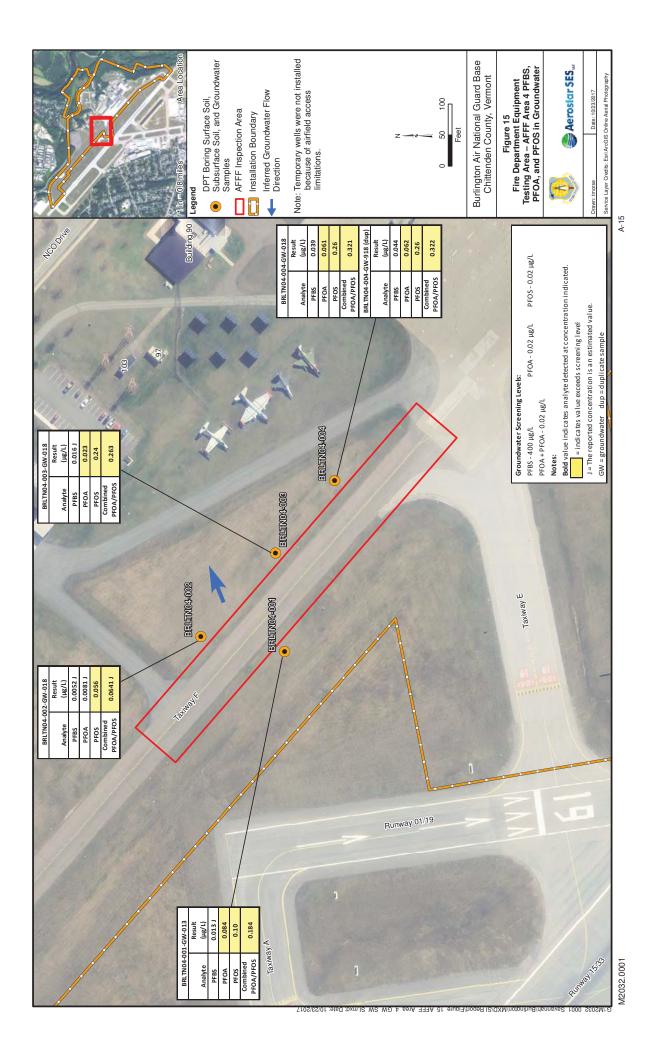


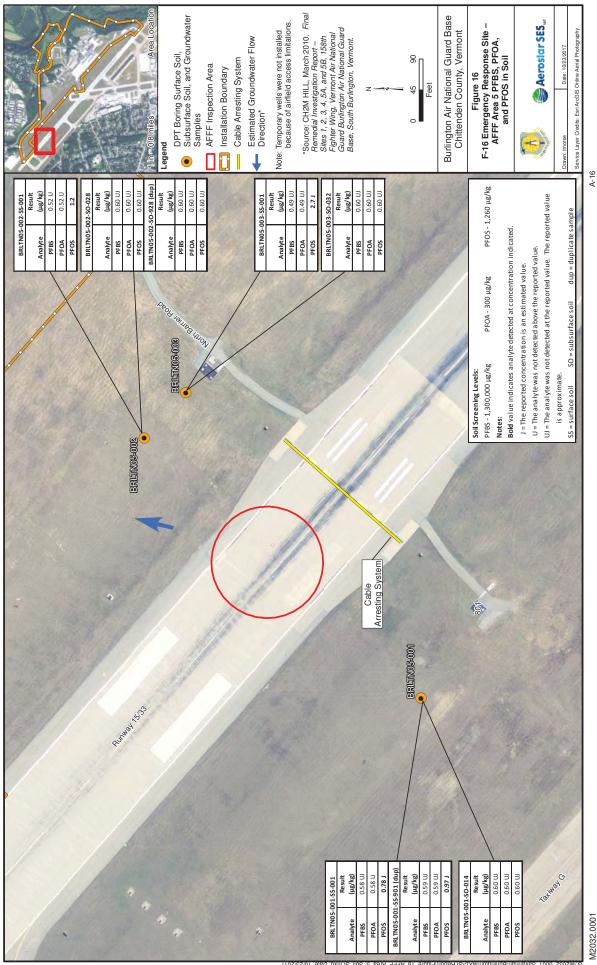

M2032.0001

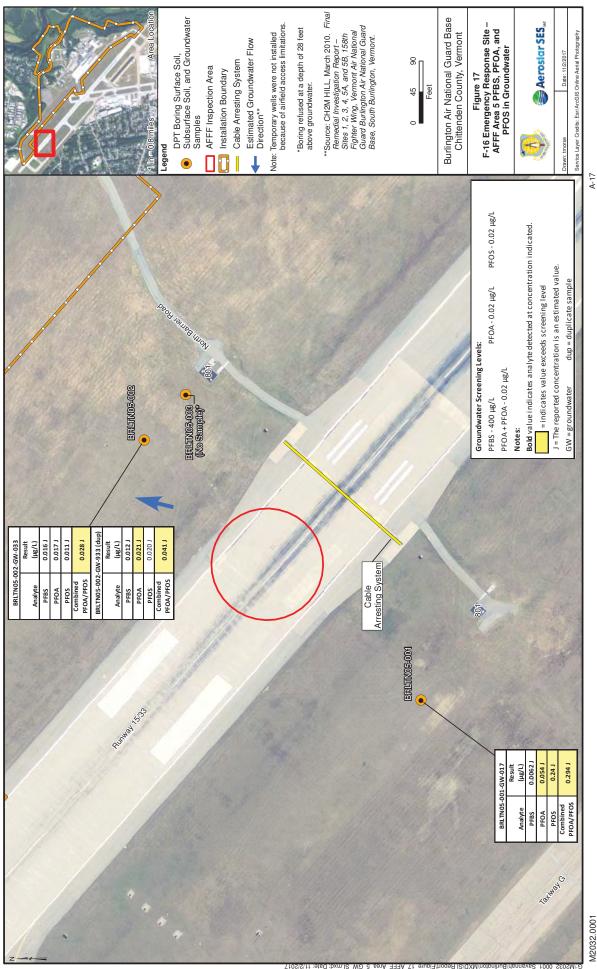


A-10

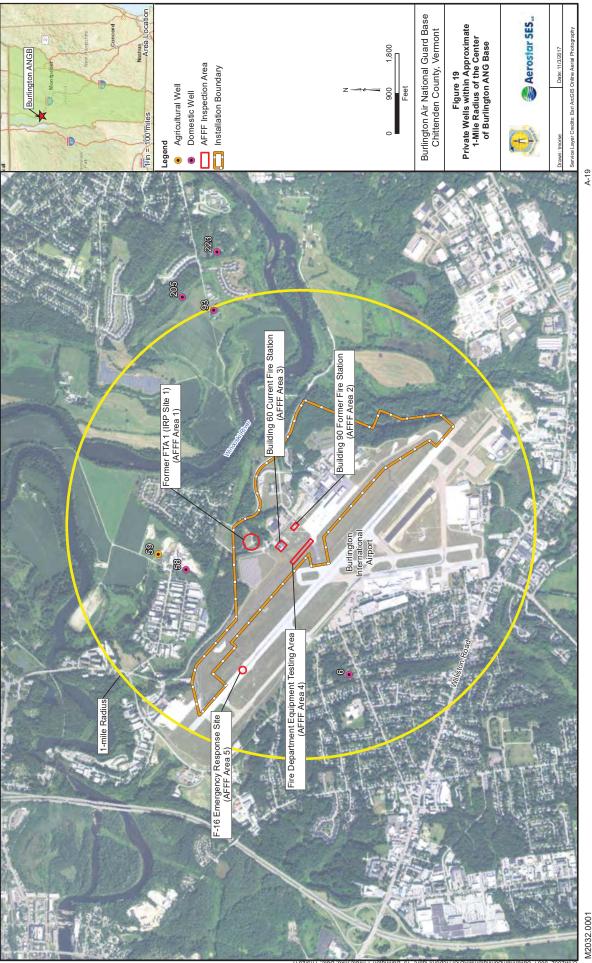



M2032.0001




M2032.0001

A-13



8.13	Period	Epoch	Unit	Columnar	Thickness	Typical Lithologic
0	Pe	Εp		Section	(feet)	Characteristics
		Recent	Fill		0 - 7'±	
			Deltaic Deposits		9 - 50'±	Fine to Coarse Brown to Gray Sand to Sandy Silt
Cenozoic	- Quaternary	Pleistocene	Lucustrine/ Marine Deposits		0 - 50'±	Gray to Blue Gray Clay, and Silty Clay, Trace Gravel
			Gravelly Glacial Till and Boulders		0 - 22'±	Gray Nonstratified Boulders, Gravel, Sand, Silt and Clay Mixtures Angular to Subangualar Cobbles
_	-		Large Unconformity			22
Paleozoic	Ordovieian		Beekmantown Group Bascom Formation			White Crystalline Limestone

Source: Roy F. Weston, Inc. (Weston), March 1986. Installation Restoration Program Phase II - Confirmation/ Quantification Stage 1, Final Report for Burlington Air National Guard Base, Vermont.

> Figure 18 Generalized Stratigraphic Column Burlington Air National Guard Base, Chittenden County, Vermont

Appendix B

Regional Screening Level Calculations

Default Resident Equation Inputs for Soil

-

Variable	Value
	Ŧ
I TQ (Larger Hazaru quonerit) uriness	
TR (target risk) unitless	1.0E-6
LT (lifetime) years	70
ET (exposure time) hours/day	24
ET (child exposure time) hours/day	24
ET (adult exposure time) hours/day	24
$ET_{n,2}$ (mutagenic exposure time) hours/day	24
$ET_{2,k}$ (mutagenic exposure time) hours/day	24
$ET_{\mathtt{e}_{\mathtt{i},\mathtt{k}}}$ (mutagenic exposure time) hours/day	24
$ET_{r_{2,\mathbf{k}}}$ (mutagenic exposure time) hours/day	24
ED _{me} (exposure duration) years	26
ED (exposure duration - child) years	9
ED (exposure duration - adult) years	20
$ED_{n,2}$ (mutagenic exposure duration) years	2
$ED_{2, \epsilon}$ (mutagenic exposure duration) years	4
$ED_{e_{i},k}$ (mutagenic exposure duration) years	10
ED, control (mutagenic exposure duration) years	10
BW (body weight - child) kg	15
BW (body weight - adult) kg	80
BW $_{ m co}$ (mutagenic body weight) kg	15
BW _{عد} (mutagenic body weight) kg	15
BW ere (mutagenic body weight) kg	80
BW روزید (mutagenic body weight) kg	80
$SA_{ m res-c}$ (skin surface area - child) cm 2 /day	2373
SA_{res-a} (skin surface area - adult) cm 2 /day	6032
SA_{b_2} (mutagenic skin surface area) cm 2 /day	2373
$SA_{2.6}$ (mutagenic skin surface area) cm 2 /day	2373
$SA_{ ext{b-16}}$ (mutagenic skin surface area) cm 2 /day	6032
$SA_{h_{5,26}}$ (mutagenic skin surface area) cm 2 /day	6032
EF (exposure frequency) days/year	350
EF (exposure frequency - child) days/year	350
EF (exposure frequency - adult) days/year	350
EF _{0.2} (mutagenic exposure frequency) days/year	350

Output generated 18JUL2017:23:07:27 M2027.0003

B-1

Default Resident Equation Inputs for Soil

N

Variable	Value
	2222
$EF_{\mathcal{I}_{\mathcal{A}}}$ (mutagenic exposure frequency) days/year	350
$EF_{E_{1,E}}$ (mutagenic exposure frequency) days/year	350
$EF_{r_{c,r_{c}}}$ (mutagenic exposure frequency) days/year	350
IFS (age-adjusted soil ingestion factor) mg/kg	36750
IFSM (mutagenic age-adjusted soil ingestion factor) mg/kg	166833.33
IRS (soil intake rate - child) mg/day	200
IRS [mease] (soil intake rate - adult) mg/day	100
$IRS_{\mathrm{c}2}$ (mutagenic soil intake rate) mg/day	200
IRS $_{_{2,c}}$ (mutagenic soil intake rate) mg/day	200
$IRS_{\mathtt{e},\mathtt{h}}$ (mutagenic soil intake rate) mg/day	100
RS، المحمد (mutagenic soil intake rate) mg/day	100
$AF_{_{res-a}}$ (skin adherence factor - adult) mg/cm 2	0.07
$AF_{_{res-c}}$ (skin adherence factor - child) mg/cm 2	0.2
${\sf AF}_{ m o2}$ (mutagenic skin adherence factor) mg/cm 2	0.2
${\sf AF}_{2.6}$ (mutagenic skin adherence factor) mg/cm 2	0.2
${\sf AF}_{ m e_{16}}$ (mutagenic skin adherence factor) mg/cm 2	0.07
${\sf AF}_{16.26}$ (mutagenic skin adherence factor) mg/cm 2	0.07
DFS	103390
DFSM (mutagenic age-adjusted soil dermal factor) mg/kg	428260
City Det (Climate Zone) Selection	Default
A, (acres)	0.5
$Q/C_{\rm m}$ (inverse of the ratio of the geometric mean air concentration to the emission flu	93.77
PEF (particulate emission factor) m ³ /kg	1359344438
A (PEF Dispersion Constant)	16.2302
B (PEF Dispersion Constant)	18.7762
C (PEF Dispersion Constant)	216.108
V (fraction of vegetative cover) unitless	0.5
${\sf U}_{\tt m}$ (mean annual wind speed) m/s	4.69
U, (equivalent threshold value)	11.32
$F(x)$ (function dependant on U _/U) unitless	0.194
City _{ve} (Climate Zone) Selection	Default
A decres)	0.5
Q/C_{v_o} (inverse of the ratio of the geometric mean air concentration to the emission flu	68.18

Default Resident Equation Inputs for Soil

Variable	Value
foc (fraction organic carbon in soil) g/g	0.006
$p_{ m b}$ (dry soil bulk density) g/cm 3	1.5
p_{s} (soil particle density) g/cm 3	2.65
n (total soil porosity) L/L	0.43396
ູ (air-filled soil porosity) L ູ/L	0.28396
ر (water-filled soil porosity) L معلمه الحمال (water-filled soil porosity) L	0.15
T (exposure interval) s	819936000
A (VF Dispersion Constant)	11.911
B (VF Dispersion Constant)	18.4385
C (VF Dispersion Constant)	209.7845
City vermace. Insurance (Climate Zone) Selection	Default
VF_{m} (volitization factor - mass-limit) m 3 kg	
$Q/C_{_{ m col}}$ (inverse of the ratio of the geometric mean air concentration to the emission fl	68.18365
A _ç (acres)	0.5
T (exposure interval) yr	26
d depth of source) m	
$p_{ m b}$ (dry soil bulk density) g/cm 3	1.5
A (VF Dispersion Constant - Mass Limit)	11.911
B (VF Dispersion Constant - Mass Limit)	18.4385
C (VF Dispersion Constant - Mass Limit)	209.7845

B-3

Default

Resident Risk-Based Screening Levels (RSL) for Soil Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See FAQ; J = New Jersey; E = see user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice) ; c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 10X c SL; SSL values are based on DAF=1; m = Concentration may exceed celling limit (See User Guide); s = Concentration may exceed Csat (See User Guide)

4

	∢													
	GIABS ABS KBA	1 0.1 1	1 0.1 1	Carcinogenic SL	TR=1.0E-6 (mg/kg)	ı	7.75E+00			Screening	Level	(mg/kg)	1.26E+00 nc	1.26E+00 nc
<u>.</u>	Rer			Inhalation SL	TR=1.0E-6 (mg/kg)	ı	ı	enic		Scre	Le	(mc	1.26E	1.26E
-	(- m/gm)	I	ı	Dermal SL	TR=1.0E-6 (mg/kg)	ı	3.53E+01	Inhalation Noncarcinogenic	SL	Adult	TH⊫1	(mg/kg)	1.17E+01	1.17E+01
Ū	Ket	MD	DW	Ingestion SL	FR=1.0E-6 7 (mg/kg)	ı	9.93E+00	lation No	۲ ۲	Adult	THQ=1	mg/kg)		1
Chronic RfD	Ker (mg/kg-aay)	2.00E-05	2.00E-05		-	-00			0)			Ŭ	01	01
	Ker (mg	2.(2.(Particulate Emission	Factor (m³/kg)	1.36E+09	1.36E+09	Dermal	SL	Adult	THQ=1	(mg/kg)	3.95E+01	3.95E+01
Inhalation Unit Risk	(, m/gu)	I	I	Soil Saturation	Concentration (mg/kg)	ı	ı	Ingestion	SL	Adult	THQ=1	(mg/kg)	1.67E+01	1.67E+01
	Ker		Δ	Ň		2	0	genic		_	_	(6	8	8
Ingestion SF	Mutagen / VUC / (mg/kg-day) / Ker	I	7.00E-02		K (cm³/g)	2 3.72E+02	3 1.15E+02	loncarcinc	SL	Child	THI=1	(mg/kg)	1.26E+00	1.26E+00
u (0			S (mg/L)	6.80E+02	9.50E+03	alation N	SL	hild	THQ=1	(mg/kg)	I	ı
		٩	٩	Henry's Law	Constant (unitless)			Inha	•••	υ			0	0
	mutage	No	No		Cons (unit	·		Dermal	SL	Child	THQ=1	(mg/kg)	6.59E+0(6.59E+0(
CAS	Number	1763-23-1 No	335-67-1	Volatilization	Factor (m ³ /kg)	ı	ı	Ingestion Dermal Inhalation Noncarcinogenic	SL	Child	THQ=1	(mg/kg)	1.56E+00 6.59E+00	1.56E+00 6.59E+00
	Cnemical	Perfluorooctane sulfonic acid (PFOS)	Perfluorooctanoic acid (PFOA)		Chemical	Perfluorooctane sulfonic acid (PFOS)	Perfluorooctanoic acid (PFOA)					Chemical	Perfluorooctane sulfonic acid (PFOS)	Perfluorooctanoic acid (PFOA)

g	
at	
Õ	
,	
Ð	
Ś	
-	
2	
5	
Ū.	
6	
Ĕ.	
<u> </u>	
Sist	
3	
E	
5	
-	
Ē	
0	
•	
ati	
alati	
halati	
nhalati	

S

Chemical CASNUM (µg/m ³⁾⁻¹ Source Classification Type Organ Species Method Route Duration Reference	1763-23-1	anoic acid (PEOA) 335-67-1
Chemical	Perfluorooctane sulfonic acid (PFOS)	Perfluorooctanoic acid (PEOA)

ata
Metad
2 ≩
Xici
Ļ
actoi
e Fac
ğ
ral SI
ō

		Oral Slope Factor	Toxicity	EPA Cancer	Oral Slope Factor Tumor	Oral Slope Factor Target	Oral Slope Factor	Oral Slope Factor	Oral Slope Factor	Oral Slope Factor Treatment	Oral Slope Factor Study
Perfluorooctane sulfonic acid (PFOS) 1763-23-1	1763-23-1	(mg/kg-aay)	Source	Classification		Urgan	pecies	Method	Koute	DULATION	Kererence
Perfluorooctanoic acid (PFOA)	335-67-1 7.00E-02	7.00E-02	DWSHA NA	NA	AN	AN	ΝA	NA	AN	NA	NA

O			
Oral Chronic Reference Dose Critical Effect	AN	NA	
Oral Chronic Reference Dose Confidence Level	NA	NA	
Oral Chronic Teference Dose Basis	NA	ΝA	Oral Chronic Reference Dose Study Reference NA
F Toxicity Source		DWSHA NA	Oral Chronic Reference Dose Study Duration NA
Chronic Oral Reference Dose CASNUM (mg/kg-day)	2.00E-05	2.00E-05	Oral Chronic Reference Dose Route NA NA
CASNUM	1763-23-1	335-67-1	Oral Chronic Reference Dose Species NA
	acid (PFOS)	FOA)	Oral Chronic Reference Dose Uncertainty Factor
Chemical	Perfluorooctane sulfonic acid (PFOS)	Perfluorooctanoic acid (PFOA)	Oral Chronic Reference Dose Modifying Factor NA
	Perfluorooct	Perfluorooct	Oral Chronic Reference Dose Target Organ NA

Inhalation Chronic Reference Concentration Critical Effect		
		Inhalation Chronic Reference Concentration Study Reference
Inhalation Chronic Reference Concentration Level		-
•		Inhalation Chronic Reference Concentration Study Duration
Inhalation Chronic Reference Toxicity Concentration Source Basis		Ū
Toxicity Source		Inhalation Chronic Reference Concentration Route
Chronic Chronic Inhalation Reference Concentration (mg/m ³)		Inhalation Chronic Reference Concentration Species
CASNUM	1763-23-1 335-67-1	Inhalation Chronic Reference Concentration Uncertainty Factor
	FOS)	
Chemical	sulfonic acid (P c acid (PFOA)	Inhalation Chronic Reference Concentration Modifying Factor
Ŭ	Perfluorooctane sulfonic acid (PFOS) Perfluorooctanoic acid (PFOA)	Inhalation Chronic Reference Concentration Target Organ

Appendix C

Readiness Review Forms, Field Forms, and Boring Logs

SES FIELD READINESS REVIEW FORM

Employee Name: Franklin Johnson

Employee Number: 130253

Job Number: M2032.0001

Job Location: ANG Burlington

<u>Job Tasks:</u>

Surface Sampling, Groundwater Sampling, Soil Sampling – Surface Soil and subsurface soil, Soil boring logging, Surface water and sediment sampling, Mobilization/demobilization tasks

Equipment Needed:

Soil boring: Munsell Charts, Tape measure, pens, soil boring forms, USCS Table,

GW Sampling: YSI, peristaltic pump, multi-RAE, sample containers etc.

Sediment Sampling: Sample containers, spoons

SW Sampling: Sample containers, SW collection device

Proper PPE for all above tasks is a minimum Level D, plus nitriles.

Documents Needed:

Field forms: Boring log, GW sampling log, sample log, log book, calibration sheets

Significant training conducted prior to departure:

- Mid Project QC Rev 4 outline reviewed with personnel.

Equipment Packed for travel on: 04/06/17

Travel Dates: 04-16-17 through 04-25-17

Site Supervisor Signature

Greg Cortson

SES FIELD READINESS REVIEW FORM

Employee Name: Kaleb Brumbaugh

Employee Number: 130333

Job Number: M2032.0001

Job Location: ANG Burlington

Job Tasks:

Surface Sampling, Groundwater Sampling, Soil Sampling – Surface Soil and subsurface soil, Soil boring logging, Surface water and sediment sampling, Mobilization/demobilization tasks

Equipment Needed:

Soil boring: Munsell Charts, Tape measure, pens, soil boring forms, USCS Table,

GW Sampling: YSI, peristaltic pump, multi-RAE, sample containers etc.

Sediment Sampling: Sample containers, spoons

SW Sampling: Sample containers, SW collection device

Proper PPE for all above tasks is a minimum Level D, plus nitriles.

Documents Needed:

Field forms: Boring log, GW sampling log, sample log, log book, calibration sheets

Significant training conducted prior to departure:

- Mid Project QC Rev 4 outline reviewed with personnel.

Equipment Packed for travel on: 04/06/17

Travel Dates: 04-16-17 through 04-25-17

Site Supervisor Signature

Greg Corlson

SES FIELD READINESS REVIEW FORM

Employee Name: Ryan Reynolds

Employee Number:

Job Number: M2032.0001

Job Location: ANG Burlington

<u>Job Tasks:</u>

Surface Sampling, Groundwater Sampling, Soil Sampling – Surface Soil and subsurface soil, Soil boring logging, Surface water and sediment sampling, mobilization/demobilization tasks

Equipment Needed:

Soil boring: Munsell Charts, Tape measure, pens, soil boring forms, USCS Table,

GW Sampling: YSI, peristaltic pump, multi-RAE, sample containers etc.

Sediment Sampling: Sample containers, spoons

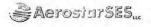
SW Sampling: Sample containers, SW collection device

Proper PPE for all above tasks is a minimum Level D, plus nitriles.

Documents Needed:

Field forms: Boring log, GW sampling log, sample log, log book, calibration sheets

Significant training conducted prior to departure:


- Mid Project QC Rev 4 outline reviewed with personnel.

Equipment Packed for travel on: 04/06/17

Travel Dates: 04-16-17 through 04-25-17

Site Supervisor Signature

greg Cortson

Project Name:	SI of AFFF Savanual
ASL Project No:	M2032.0001
Installation:	Burlibation ANGB
Site:	07,0
Date:	4/19/17
Sample Technician:	Maein Repuells
Well ID No .:	BILLIN 02-001

	1. Sec. 1.	li	nitial Measur	rements			
Well Total Depth:	30.45	ft BTOC	Water Level:	22.13	ft BTOC		
WELL VOLUME PURGE (only fill out if applicable)		JME = (TOTA (30-4)	S Ft - ^{22,13} Ft) >	BTOC - STATI	C DEPTH TO	WATER) X Bal	WELL CAPACIT
Calculated Well Volume:		Gallons		Well Diameter	0,75	inc	nes
Calculations:	1" diameter	= 0.041 gal/f	t 2" di	ameter = 0.163 ga	I/ft 4	" diameter =	0.653 gal/ft

Well Purging Activites

Purging Method (pump type): ____

Peristallic

Flow rate (incl. units):

400 ml/min

Time	Flow Rate (ml/min)	Turbidity (NTUs)	Temp (°C)	Cond. (mS/Cm)	рН	Depth to water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments
6:31	400	DOR	8.7	#163	8.65	22,13	8,45	-191.2	0.105	
16:41	400	7.89	5.76	0169	8.39	-		-182.0		
6:51	400	4.73	8.80	+170	8.11	-	5.00	-62.1	2.205	
17:01	400	2.13	8.74	168	7.85	-	5,30	-41.8	3.255	
17:11	400	1.74	8.75	167	7.70	-		-129.6	4.305	
17:21	400	1.70	8,72	166	7.53		5.47	-133.7	5.355	
Results A	t End Of Purging:	1.70	8.72	0.186	7.53	*	5:47	-133.7	5,355	

* cannot fil wother level probe down well with tubing inside COMMENTS: Puny start @ 16:30 Punp stop @ 17:21

C-4

Project Name:	SI of AFFF Barantaly
ASL Project No:	M2032,001
Installation:	BUTINHA ANGOS
Site:	03.
Date:	4/10/17_
Sample Technician:	Report Roycolles
Well ID No .:	OBRLTNB2-002

Initial Measurements

the second second second	1.55		Water Level:			R BTOC	X WELL C	APACI
WELL VOLUME PURGE: (only fill out if applicable)	=	(31.55	Ft - 27.44	x 0.02	gal/ft =	5, 03 22 Gal		
Calculated Well Volume:	0.0822	Gallons		Well Di	ameter:	0.75	inches	
Calculations:	1" diameter	= 0.041 gal/ft	2" d	iameter = 0	.163 gal/ft	4" diame	eter = 0.653 gal/	'ft

Well Purging Activites

Purging Method (pump type):

Peristaltic

Flow rate (incl. units): _

330 ml

Time	Flow Rate (ml/min)	Turbidity (NTUs)	Temp (°C)	Cond. (mS/Cm)	рН	Depth to water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments
0.20	330	-00R-	9.26	0,136	8136	-	5.85	-152.4	0.08	
0:30	330	10.9	9.35	0,138	8.31	-	5.33	-151.8	0.38	
10:40	330	1.45	9.41	0.136	7.95	-	5.85	-128.2	1.88	
10:50	330 330	1,27	9.49	0.134	7.99	-	5,86	-119.6	2.48	
11.00	330	0.80	9.53	0.133	7,80	-	5,79	-115.9	3.28	
				1			-			
								1.2.1		
Results At	End Of Purging:		1.1	1000	1			1		

Pump started @ 10:19 Pump finish @ 11:00 COMMENTS:

* commot fit water level Prope in well while tubiy is in.

Project Name:	SI of AFFF Savanvah	
ASL Project No:	M2032.0001	_
Installation:	BUTINATEN ANGB	
Site:	07	
Date:	4/20/17	
Sample Technician:	Rebern Royvolly	-
Well ID No.:	OBRITN 02-003	_

		In	iitial Measurements
Well Total Depth: 37	46	ft BTOC	Water Level: 29.27 ft BTOC
WELL VOLUME PURGE: 1 (only fill out if applicable)	WELL VOLUM	1E = (TOTA	L WELL DEPTH BTOC - STATIC DEPTH TO WATER) X WELL CAPACITY $f_{\rm ft} = 0.102$ gal/ft = 0.103% Gal
Calculated Well Volume: 0	1.1634	Gallons	Well Diameter: 0,75 inches
Calculations:	1" diameter =	= 0.041 gal/ft	2" diameter = 0.163 gal/ft 4" diameter = 0.653 gal/ft

Well Purging Activites

Purging Method (pump type):

Peristaltic

Flow rate (incl. units):

135m//min

Time	Flow Rate (ml/min)	Turbidity (NTUs)	Temp (°C)	·Cond. (mS/Cm)	рН	Depth to water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments
8:47	135	-00R-	7.71	0.167	8.53	-	4.76	-104.4	0.035	
8:57	135	-00F-	7,83	0.170	8,41	-	4.72	-100,0	0.385	
9:07	135	30.8	8.18	0.170	8,27		4.75	-109.2	0:735	
9:17	139	6.06	8.21	0.168	8.22	-	4:62	-117.8	1.085	
9:23	135		\$,30	0.167			4.88	-1201	1.435	
9:37	135	6.00	96,39	0.168	8.13	-	4.90	-119.8	1,785	
		,				7.1				
			1.5			-	1			
-					-			345		
			-		1	C				
-							-			
	_			-				-	-	
		-		-	-			-	-	
		-	-							
				-	-					
					-					
Results A	t End Of Purging	: 4.84	8.39	0.168	8.13	*	4.90	~119.8	1.785	

Purginz sitertod @ 8:46 Junging ended @ 9:37 * cannot fit water revel probe down well while tubits is inside COMMENTS: * slow darelapment due to

Project Name:	SIATE Savannah	
ASL Project No:	m2032.0001	
Installation:	Burline ton ARB	
Site:	03 0	
Date:	4/19/17	
Sample Technician:	Kaleb Brum baugh	
Developren Well ID No .:	BRLING3-001	

Initial Measurements

Calculations:	1" diameter	= 0.041 gal/ft	2	" diameter =	0.163 gal/ft	4" diameter = 0.65	3 gal/ft
Calculated Well Volume:	0.174	Gallons		Well I	Diameter: 0,74	inches	
(only fill out if applicable)	×	(25,7	Ft F.U F	t) x 0,02	gal/ft = 0117	Gal	
WELL VOLUME PURGE:	1 WELL VOLU						ELL CAPACIT
Well Total Depth: 2	1.7	ft BTOC	Water Leve	1: 17-	ft BTOC	1	

Well Purging Activites

Purging Method (pump type):

Per: Pump

Flow rate (incl. units): 5-00mL/m,h

Time	Flow Rate (ml/min)	Turbidity (NTUs)	Temp (°C)	Cond. (mS/Cm)	рН	Depth to water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments
1510	500	OR	4.64 0	213	9,40	NA	3:34	-281	500	
1520	1111	54.4	8.64 0		4:32	11	3.92	-28E	till	5500
1530	11 11	2602	8,66		9.21		3186	-276	10500	
15 hc	14 11	10,9	8.61	0.7.10	9.02		4:31		15500	
					1					-
Results A	t End Of Purging:	10.4	8.61	0.210	9.02		4.31	-261.6	155000	4

OFTS" well diameter equals 0.02" OF= outof Range, (FNO FOX: NO GWL reading due to diameter of well & diameter of poly flew Outof)

AerosturSES...

WELL DEVELOPMENT LOG

	an time when the a differ a simply	
Project Name:	BORTINGTON ANGR SI B AFFF Sava Nun 4	
ASL Project No:	M203.2.0001	
Installation:	Burlimtan ANGIS	
Site:	03	
Date:	4/19/17	
Sample Technician:	Rigon Ryrolly	
Well ID No .:	BRLIN 03-002	

Initial Measurements

Well Total Depth: 25	45	ft BTOC	Water Level:	18,53	ft BTOC	
WELL VOLUME PURGE:	1 WELL VOLUM	E = (TOTAL	WELL DEPTH	BTOC - STATI	C DEPTH TO V	WATER) X WELL CAPAC
(only fill out if applicable)	-	(25.45	5 Ft - 19 5 Ft) x	0.02 gal/ft	$= 0.1184_{\rm G}$	al
Calculated Well Volume:	0.1784	Gallons		Well Diameter	: 0,75	inches
¿ Calculations:	1" diameter =	0.041 gal/ft	2" dia	ameter = 0.163 ga	l/ft 4	" diameter = 0.653 gal/ft

Well Purging Activites

Purging Method (pump type): _______ Por isfallic

Flow rate (incl. units): 52.0 ml/mil

Time	Flow Rate (ml/min)	Turbidity (NTUs)	Temp (°C)	Cond. (mS/Cm)	рН	Depth ter water (BTOC	DO (mg/l)	ORP	Total Gal Pumped	Comments
4:11	520	-00R-	8.67	0.173	8.16	-	7.39	-97.2	1.\$7	
4:21	520	33.2	8.86	0.174	8.21	-	6,98	-107.1	2.8	
14:31	520	20.7	8,65	0174	8.23	-10	8.46	-117.6		
14:36	520	16	8.64	0.175	8.19	-	6.45	-114.9	4,75	
4:41	520	14	8.65	0.175	8.10	7-	6.47	-118.2		
14:46	520	6,25	8.63	0.175	8,00	-	6.40	-118.3	6.05	
-										
								1		
	1			5		1				
		-		-						
			T	17				1		
			4	X-			-			
				171			12			
					1000		/			
								1	-	
					-					
Results A	t End Of Purging:	6.25	8.63	0.175	8.00	16-50	6.40	-118.3	6.05	

Pump start @ 14:02 Pump stop @ 14:45 Firal DTW = 16.50

* cannot fit water huf down well with tubiag inside

COMMENTS:

AerostarSES...

PROJECT: SI d	of AFFF Areas (Savannah) M2032.0	001		Ins	tallation:E	urlington AFB						
WELL NO: B	RLTNO	1-MW-V1	BP2	SAN	APLE ID:	SRLT	NOI-MW-1	118P2-000	D.	ATE: 0	4/20/	2017	
WELL DIAMETER (inch WELL VOLUME (only fill out i	PURGE: 1 WEL		WELL DEP	TH - STATIC	FI -	F	EPTH: STA TO V X WELL CAP	WILLI Licely.	13	PUR OR E	ge pump ty Bailer:	PPE pp	
EQUIPMENT VOL	UME PURGE: 1	EQUIPMENT VOL. = PI					ING LENGTH) +	FLOW CELL VOLUM	E Lo	cation (Circle	e one):		
(only fill out		D.N.A.	= IAL PUMP O	gal + (x	10	L) +	gal =		Monitorir Other	OTAL VOLUME	emporary Well	ſ
DEPTH IN WELL	(feet): 9	10 DE	PTH IN WEL	L (feet):	1.0	IN	ITIATED AT:	632 ENDE	DAT: 17	03		4.50	
TIME	VOLUME PURGED (gallens)	CUMUL. VOLUME PURGED (gellons)	PURGE RATE (gpm) mL/min	DEPTH TO WATER (feet)	pH (standard units)	TEMP (^o C)	mS/cr or µS/cr	n) OXYGEN mg/L	O ORP (mV)	TURBID (NTU:	200 B	and the second second	DOR scribe)
1632		-Pump S	tont					~	-				-
1642	1.5	1.5 '	150	8.99	5,98	5.86			69.3	10,2			p
1647	0.75	2.25	150	8.99	5.72	5.79	0,054		93,5	6.13			ne,
1653	0.75	3,00	150	8,95	5.68	5,81	0,05		100.4	14.2	- clei		
1703	0.75	4.50	150	8,99	5,44	5,60	1		117.2	13.6			-
	-	-						-	-		-	-	-
						F	Do						
	-	2	-			,			-		-		
							1						-
	A. CAPACITY (Gal./	0.75* = 0.02; 1* = 0.04 Ft.): 1/8" = 0.0006; 3/ B = Baller; BP = Blade	16" = 0.0014;		5/16" = 0.0	04; 3/8"		0.010; 5/8" = 0.016	fy)				
SAMPLED BY (nJohnan /	ASL	SAM	PLER(S) SIGN		11 11		and the second sec	PLING ATED AT:	1114	SAMPLING ENDED AT:	ENDED AT:	7
PUMP OR TUB	ING 1	9.0	TUB MAT		/	1		FIELD-FILTERED: Filtration Equipme				/a mm	
FIELD DECON	TAMINATION:	PUMP Y		UBING Y SAMPLE CC			CATION	1	ICATE:	Y	(N) Low Flow		
	SAMPLE ID	CODE	#	CONTAINERS	MATE	PIAL	OLUME (mL)	INTENDED ANALYSIS AND/OR METHO	SAMP EQUIP CO	MENT	Sampling	SAMPLE PU FLOW RATE per minut	E (mL
BRLTNOI-A	NW-VIB	P2-009		1	PE		250	EPA 537M	APP		/	150	
			-	-			T						
						Ŧ.	d-				_		
			-		-	-	(*		-				
REMARKS:													_
Well Abandoned	0	e Well Abandoned:				_							
Well Measurem	AG = Amber		ss; PE=P				illicone; T = Tef		y)				
AMPLING EQUIPM	ENT CODES:	APP = After Peristaltic Pu		Bailer, BP = B	ladder Pump;		Electric Submersib						

Aerostar SES...

PROJECT: SI of	AFFF Areas (Savannah) M2032.0	001		Ins	BRIT	willington AFB	-30	2-1	2170				
WELL NOJK-V	11-202			SA	MPLE ID:			30201	1924/		ATE: 4/	10/17		-
WELL		TUBING	DIAMETER	WE	PUR ELL SCREEN I	GING DA		TIC DEPTH				PUMP T		
DIAMETER (inche WELL VOLUME P (only fill out if	URGE: 1 WEL	L VOLUME = (TOTAL	WELL DEP				X WELL CA			5	OR BAI	LER:	PP	_
EQUIPMENT VOLU (only fill out If		EQUIPMENT VOL. = PI		E+(TUBINGC/ gal + (Ć			NG LENGTH) +) + O_r			gal ,	Monitoring		empora	ry Well
NITIAL PUMP OR	1-	100 T	IAL PUMP C			2.41	IRGING	10-70	PURG	NG	100 million (100 m	AL VOLUMI GED	ŧ	
TIME	VOLUME	CUMUL. VOLUME PURGED	PURGE RATE	DEPTH TO WATER	pH (standard units)	TEMP.	CONI mS/cr	DIS m OX	ENDED SOLVED XYGEN mg/L	ORP (mV)	(gelic TURBIDIT (NTUs)	Y CO	LOR scribe)	ODOR (describe
	-(gallons)	(gellons)	m	(feet)			- Cusic							
1536					Pum	PSfal	11					1		-!
1536	10.11	P.		Stop -		V	1	d1-1-			1			
1550	MOUNL 1000	Houme	2007	12.1	6.92 Punf	7.7	0.28 me	- Series	96	1.0	49.3	SLM	alky	Aory
1603	1000	Pump	Star	+	V um p	2100			dry			-	-	4
160 4	ISUML	155UML	Isone	12.01	6.83	7.14	0:300	1:	29	-8.1	44.3	S	withy	home
16.05			- 2	imp s	step		. ne		Y -					-1
1625	· fump	SHITH	100mL	12.1	6,55	8,05	0,310	5 0;	331	14.7	4101	c he	ar	more
1628	Pam.	2.540	MIL	13.68	-		-					-		
	1	1850mL			-	-	-	-	-			-		
	-											-		1. Same
VELL CAPACITY (G UBING INSIDE DIA, PURGING EQUIPME	CAPACITY (Gall	0.75* = 0.02; 1* = 0.04 (Ft.): 1/8* = 0.0008; 3/	16"= 0.0014;	1/4" = 0.0026;	5/15* = 0.0	04; 3/8" =	0.006; 1/2"=	0.010; 5/8	= 5.88 * = 0.016			-		
SAMPLED BY (P		B = Baller; BP = Blade	-	ESP = Electric S	SAM	LING DA	= Peristallio Pum (TA 2	p; 0 = Ob	SAMPI		Isa	MPLING	ENDER	AT
PUMP OR TUBIN	umbaug VG	h	TUB	alle the	an			FIELD-FIL Filtration E	INITIA	TED AT:16	NY FOM S	DED AT:		
FIELD DECONT	FAMINATION:	PUMP Y	NT	UBING Y SAMPLE CO	N (repla		ATION	INTEN	DUPLI			N) w Flow	SAM	PLE PUMP
	SAMPLE ID	CODE	#	CONTAINERS	MATE CO		OLUME (mL)	ANAL'	YSIS	EQUIPA	MENT SI	ampling V	FLOW	/ RATE (mL r minute)
BRETAKOL	-REGO	7		1	10	PE 7-	50	537	M	Pf	>	V		
BRITNO	1-1444-14	SP3-012-												
_			-								-		-	_
									- 1	-				
EMARKS: PLAP	ED Dry	b/11936-15	38	1550 -	1655	5, 16	03-1	605,16	75-	1678	/			
and a state of the second second		e Well Abandoned;	J		222			,,						
Vell Measuremer		Glass; CG = Clear Glas		halladanas	B = Delmass	- C-	inona: T-T-	ani 0 - 0"	nr (9nn-16*	_				
	ENT CODES:	Glass; CG = Clear Glas APP = After Peristallic Pur RFPP = Reverse Flow Peri	np; B=E	Baller; BP = B	ladder Pump;	ESP = Ele	icone; T = Tell ectric Submersibl ; O = Other (e Pump;	et (apecity)					

Aerostar SES...

VELL NO: BA VELL VAMETER (Inches): VELL VOLUME PUR (only fill out if app	11	oi-mw-	102	SAM				_					
DIAMETER (inches): VELL VOLUME PUR	2"				VIPLE ID:	BRLIN	101-M	W-1	02-041	DA	TE: 41	18117	
DIAMETER (inches): VELL VOLUME PUR	2"					GING DAT					Lawrence		
	1	(inches)	DIAMETER	1 G.	E FL -	IC. CLEI	TOW	TIC DE		16	OR BAILE	ER: PI	0
		VOLUME = (TOTAL	WELL DEPT	H - STATIC	DEPTH TO	WATER) X	WELL CAP	PACITY Gal		10			
QUIPMENT VOLUME					0+16	Y TUBIN		FLOW		Loc	ation (Circle one	4.	
(only fill out if app				an and a second sec					= 0,139	gal (Monitoring W	-	orary Well
VITIAL PUMP OR TU PEPTH IN WELL (fee			NAL PUMP O		[[PUR	GING	61					57
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (^o C)	CONE mS/cr or µS/cr	n	DISSOLVED OXYGEN mg/L	ORP (mV)	TURBIDITY (NTUs)	COLOF (describe)	ODOR (describe
6:16	0.36	0.36	0.09	8.81	8.25	5.14	5%	7	70.2	169.9	2.72	Cten	- nano
16:31	5.4	5.76	0.09	9.37	6.55	4.52	539		59.2	148.1	2.72	clear	- none
	0.27	6.03	0.09	9.40	6.62	4.70	53	-	57.2	138.3	2.73	chen	- nout
16:37	0.27	6.30	0.09	9.62		4.67	53		8.1	132.7	2.97	clean	- hour
16:40	0.27	6.57	0.09	9.68	6.80		52	8	55.3	134.2	4.38	clen	nant
16:4 (80)											1		
			1	1	FT	-							
				/	X.	/							
													1
ELL CAPACITY (Gallo JBING INSIDE DIA, CA URGING EQUIPMENT	PACITY (Gal./Ft	.): 1/8" = 0.0006; 3		1/4" = 0.0026; ESP = Electric S	5/16" = 0.00	04; 3/8" = 0.		0.010;	12" = 5.88 5/8" = 0.016 D = Other (Specify)		_		
AMPLED BY (PR)	NT) / AFFILIA				SAMF	LING DAT	A				SAN	PLING END	ED AT:
AMPLED BY PRI	yndoz		TUBI	PLAR(S) SIG	r Key	indote		EIEI	INITIA		145 SAN	ED AT: U	-
EPTH IN WELL (fe	eet):	4	MAT	ERIAL CODE:		3	-		tion Equipment	t Type:	N Filler Size	1	mm
FIELD DECONTAN	MINATION:	PUMP Y (N TI	JBING Y SAMPLE CO	N (replác		TION			SAMPL	ING LOW	-	AMPLE PUMP
	SAMPLE ID CO	DDE	#(CONTAINERS	MATE CO	RIAL VOI	UME (mL)		NALYSIS	EQUIPM COD	IENT Sar		OW RATE (ml per minute)
BRLTNO	I-nw	-102 -01	-	l	HOP	E 29	iom(5	37 M	APP		1	7.09
			_		-			-			-		
	-					TH				-	-		
						TNA	-			-			-
	-									-			
MARKS:	B						1.						
/ell Abandoned?	N Date I	Well Abandoned:					_	-		-			
/ell Measurement I	Method: (Prol	be Tape Othe	r	100					1				
ATERIAL CODES: AMPLING EQUIPMENT		lass; CG = Clear Gla PP = After Peristaltic Pu		olyethylene; Pl Baller; BP = B) = Other (Specify)				_

AerostarSES...

PROJECT: SI of	AFFF Areas (Se	avannah) M2032.0	0001		Ins	tallation:Burl	ington AFB		_				
WELL NO: B	RLTNO	1 - MW-	103	SAN	IPLE ID:	FLTNO	1-1mu	-10	3-009	DA	TE: 4/1	8/17	
10		-				GING DAT						1	
WELL DIAMETER (inche	s): 2 ¹¹	TUBING (inches)	DIAMETER	(1 3.	1 SCREEN IN	TERVAL DEPT		TIC DE	4	35	PURGE P	PUMP TYPE	PP
WELL VOLUME P (only fill out If		VOLUME = (TOTAL		H - STATIC 35 FU X		WATER) X gal/ft =	WELL CAP	PACITY Sal					
					DioIT/		.664		CELL VOLUME	lan	tion (Circle one	A.	
only fill out if		QUIPMENT VOL. = P	= Ø	gal + (0 •	0026x	14 FL)	+0.1	gal	1364		(Monitoring W	5	ary Well
NITIAL PUMP OR	TUBING	O Fit	NAL PUMP OF		q	PUR	GING	-	PURGI	NG	TOTAL	VOLUME	22
DEPTH IN WELL (feet):	Y.	PTH IN WELL				-		18 ENDED		52 PURGE (gallons	s):	25
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND mS/cm µS/cr	7	DISSOLVED OXYGEN mg/L	ORP (mV)	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe
17:22	0.36	0.36	0.09	3.59	7.26	3.68	554	1	0.84	104.0	57.1	chear	nane
17:41	0.27	1.71	10.09	3.80	7.10	3.17	56		0.86	107.3	4.99	clou	nave
17:44	0.27	1.98	0.09	3.80	7.09	3.14	564	1	0.67		5.00	clen	non
17:47	0.27	2.25	0.001	3.81		9.13	564	-	0.67		5.08	den	non
/													
												· · · ·	
						~	-		1.00		1		
						A	Δ						
		1.00				1		/	/				
										/	_		
		1		100				5			1		
WELL CAPACITY (G				6; 2* = 0.16; 1/4* = 0.0026;	3" = 0,37; 5/16" = 0.0			= 1.47;			100		1
PURGING EQUIPME				ESP = Electric S	ubmersible Pu		Peristaltic Pump		O = Other (Specify)		-	
SAMPLED BY H	MINT) / AFFILIA	TION AFTOST	SAMI	HER(S) SIGN	ATURE(S	tok.			SAMP		7:52 SAN	MPLING ENDE	D AT:
PUMP OR TUBI	NGO	9	TUBI	NO	0	~7		1.2.1	LD-FILTERED;	Y (N Filter Ster		mm
FIELD DECON		PUMP Y /	-	ERIAL CODE: JBING Y		ced		Filtra	tion Equipmen		Ø.	ν,	
-	-	C		SAMPLE CO	MATE				NTENDED	SAMPL	ING LOY		APLE PUMP W RATE (mL
	SAMPLE ID C			CONTAINERS	co	DE	LUME (mL)	AND	OR METHOD	COD	E	/ p	er minute)
		-103-000		2	HPF		jom!	1	37 M	APF			,09
BK4TN	01-ma	-103-90	1	1	HPP	6 25	om(53	37 M	APF		10	.04
					F	- 1	S						
		_		_	-		, .			-		_	-
REMARKS: Par	ent +	- MS/m	SD t	field y	ə			L	-				
	a val	Well Abandoned:	-			_	_						_
	~	be) Tape Othe	ər		-								
MATERIAL CODES:	AG = Ambar G	Blass; CG = Clear Gla	ass; PE = Po						0 = Other (Specify)	-		-
SAMPLING EQUIPM		PP = After Peristallic P FPP = Reverse Flow P				ESP = Elec Gravity Drain);	tric Submersib 0 = Other						

WELL NO: B	RL TO1	-V1-MW3	141-	SAI				NV244-00	8 DA	TE: 4/1	9/17	
WELL	2		DIAMETER	1/4 WE		GING DAT	TH: STAT		95		UMP TYPE	P
		(inches) . VOLUME = (TOTAL = ([2.	WELL DEP	TH - STATIC FI) X	- Ft -	gal/ft =	WELL CAP	ACITY	1	OR BAILE	R: 1	
EQUIPMENT VOL		QUIPMENT VOL. = PI	JMP VOLUM	Constant Constant and	APACITY		GLENGTH) + + 0, 1	FLOW CELL VOLUME	nal	Ation (Circle one	2	ary Well
INITIAL PUMP O		a	(PH)	RTUBING	8,002¢	PUR		OI 150			VOLUME D 3.0	14
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PTH IN WEI PURGE RATE (gpm)	DEPTH TO WATER (feet)	0 pH (standard units)	TEMP.	COND mS/cm or µS/cn	DISSOLVED OXYGEN mg/L	ORP (mV)	(gailons) TURBIDITY (NTUS)): COLOR (describe)	ODOR (describ
12:43	0.08	0.08	0.08	4.16	8.04	5.48	552	0.35	-30.8	11.0	clen	home
13:00	1.44	1.44	0.04	4,11	6.14	5,34	550	0.26	451,9	5.12	clear	none
1310	0.80	2.24	0.08	4.11	8.16	5.31	549	0.31	-94.8	4.05	Chen	News
1315	0.40	2.64	0,08	4.11	8,10	5.17	546		- 55,3	3.44	clear	inare
1320	0,40	3.04	0.08	4.11	8.12	5.17	546	0.24	-57,0	2.73	clien	houe
		-								1		
	1000				17	-						
			1		10					-	÷.	
1.						-	-		-		-	-
			-		-			-		1	-	5-
		0.75° = 0.02; 1° = 0.04					*= 1.02; 6*=		1			P
TUBING INSIDE DI PURGING EQUIPM	A. CAPACITY (Gal./F ENT CODES: B	Ft.): $1/8^{n} = 0.0006$; 3 = Baller; BP = Blad	'16" = 0.0014; der Pump;	1/4" = 0.0026; ESP = Electric \$	Submersible Pu		Peristaltic Pump	0.010; 5/8" = 0.016 c; O = Other (Specify)	-	-		
SAMPLED BY	PRINT) / AFFILI	Ation: Aerester 6	ES SAN	PLER(S) SIG			~	SAMPI	ING	21 SAM	PLING ENDE ED AT: 13	DAT:
PUMP OR TUB	INGO	8	TUB	ING ERIAL CODE	. 0			FIELD-FILTERED: Filtration Equipmen	1	N) Filter Size		mm
FIELD DECON	TAMINATION:			UBING Y	(N (repla			DUPLI		Y (N		
	SAMPLE ID C	CODE	#	CONTAINER	MATE	SPECIFICA ERIAL VOI	LUME (mL)	INTENDED ANALYSIS AND/OR METHOD	SAMPL EQUIPN COD	MENT San	npling FLO	MPLE PUMP W RATE (ml er minute)
BRLN	t01-V1	-MW14L-	007	1			Somi	537M	APP		- / -	1.08
				-	-	~	-		-		-	
							\vdash					
				_					/			

Aerostar SES...

PROJECT: SI of	AFFF Areas (S	Savannah) M2032.0	0001		Ins	tallation:Bur	ington AFB						
WELL NO:	17	BA-BR	I-TND2	Lecil SAM	MPLE ID:	3RLTA	107-0	01-C	w-02	-7 DA	TE: 4/2	#117	
	0	,	1		PUR	GING DAT	4						
WELL DIAMETER (inches		TUBING (inches		11 32	45 FI -7	TERVAL DEP	TOW	TIC DEPTH	-)0	5.9	PURGE P OR BAILE	INP TYPE ,	PP
(only fill out If a				5.9 FD x									
EQUIPMENT VOLU	IME PURGE: 1 E	EQUIPMENT VOL. = F		and a second second			ELENGTH) +	FLOW CEL	LVOLUME	Loca	ation (Circle one):	
(only fill out if	applicable)		= 0	gal + (O	.00729 ×		0.	gal =	0.196	Z or	Monitoring W	ell (Tempo	rary Well
INITIAL PUMP OR DEPTH IN WELL (-	77	NAL PUMP OI EPTH IN WEL		27	PUR	GING	4:00	PURG	NG 14	535 PURGE		100
	T T	CUMUL.	PURGE	DEPTH	pH	TEMP.	COND	_	SSOLVED	ORP	(gallons	COLOR	ODOR
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	RATE (gpm)	TO WATER (feet)	(standard units)	(°C)	mS/cm or IIS/cr		MYGEN mg/L	(mV)	(NTUs)	(describe)	(describe)
14:15	0.7	0.7	0.07	مسين	7:78	9.42	237	7 5	.81	-47.0	908	prem	nare
14:20	0.35	1.05	0.07	-	7.80	9.39	240	5	-14	68.1	5.98	Clem	none
14:25	0.35	1,40	0.07	1	7.71	9.30	24		.63	-54.9	4.22	Chen	- Man
14:30	0.35	1,75	0.07	-	7,69	9.29	246		5. GG	-64.7	2.82	cler	here
14:35	0.35	2.00	0.07	-	7.41	9,21	245	5 5	5.70	- G7.9	1,50	Um	- hours
-					-		-		4				1
				_	1					11.00	-		4
1		4			1	1		-	-	1			
	-				1			-	_	-			_
								_	-			-	
	-										/	-	
WELL CAPACITY (G	allons Per Foot);	0.75" = 0.02; 1" = 0.0	4; 1.25" = 0.0	6; 2*=0.16;	3* = 0.37;	4" = 0.65; 5	= 1.02; 6" =	= 1.47; 12	*= 5.88				
	CAPACITY (Gal./	Ft.): 1/8" = 0.0006; 3	3/16" = 0.0014;		5/16" = 0.0	04; 3/8* = 0.		0.010; 5	/6" = 0,016 Ther (Specify)	-		
SAMPLED BY (P	RAT / AFFILI	ATION: / 1-+	SAM	PLER (8) SIGI	NATURE(S)	LING DAT	Â	_	SAMP	LING I	SAM	PLING END	EDAT
PUMP OR TUBIN	16 J.	WE/ASI	TUBI	NG	m F	grow		FIELD-F	INITIA	LING TED AT: L	N Filter Size	ED AT: 14	- 56 mm
DEPTH IN WELL	(feet):	E / PUMP Y		ERIAL ODE:	PE	Cedy.		1 (Equipmen	t Type:	YA		
			2	SAMPLE CO	NTAINER	SPECIFICA	TION		NDED	SAMPL	ING LOW	Flow SA	MPLE PUMP
Bar	SAMPLE ID C			CONTAINERS	MATE CO		UME (mL)		LYSIS METHOD	EQUIPN	E		OW RATE (mL per minute)
BRLTN	02-00	- GW-02	7	l	A171	?E 2	Some	537	M	API	2 1		_
			-		-	A	x		-	-	-		
						P	4						
									-				
REMARKS: FU	nal F	tw = z	5.8 (7	_								
				,		_							_
	-	Well Abandoned:		1/201	1							_	
Well Measuremer MATERIAL CODES:	AG = Amber	Glass; CG = Clear Gla	ass; PE=Po	lyethylene; Pl					ther (Specify)			
SAMPLING EQUIPME		APP = After Peristallic P RFPP = Reverse Flow Pe	ump; B = B	ailer; BP = B	ladder Pump;	ESP = Elec	tric Submersibl	le Pump;					

Aerostar SES...

PROJECT: SI of	AFFF Areas (S	avannah) M2032	2.0001		Ins	tallation:Burli	nglon AFB		-			
WELL NO: B	RLTNO	Z-MWC	200	SA	MPLE ID:	BRETN	102-0	102-GW-0	29 DA	TE: 4/2	1/17	<u> </u>
						GING DATA				11	1	
WELL DIAMETER (inches	s): 0.7	5 (inche	NG DIAMETEI		ELL SCREEN IN	31.57			7.43	PURGE P	PUMP TYPE P	Р
WELL VOLUME P (only fill out if		VOLUME = (TOT = (
		3	155 ^{Ft}	27.43	0.02	6	0,082	4		_		
EQUIPMENT VOLU (only fill out if		QUIPMENT VOL. =						gal = 0+196		ation (Circle one Monitoring W	/	ary Well
NITIAL PUMP OR	TUBING		FINAL PUMP		0.00 Cp	51 PURG		Inunci	NO	her	VOLUME .	
DEPTH IN WELL (70 1	DEPTH IN WE		29	INITIA	TED AT:	CIG ENDER	AT: 8	35 PURGE	D	.52
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (^o C)	COND. mS/cm µS/cm	DISSOLVED OXYGEN mg/L	ORP (mV)	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
8:26	0.80	0,30	0.08	-	-7,63	9.35	298	14.36	-39.6	21.1	churry	nonp
8:29	0.24	1.04	0.08	-	_	9.35		5 11.38			ctom	hen-
8:32	0.84	1.28	0.03		7.61	9.34						nen
6:35	0.24	1.52	0.08		7.59	9.33	29"	7 11.42	-45.9	Q.57	Cinon	neme
		_	-	-				-				
					-		_					-
				-	-	tr			-			-
			-	-		-11	-					
			-		-	-						+
		12			1			-	-			1
			-									-
VELL CAPACITY (G UBING INSIDE DIA.	CAPACITY (Gal./F	t.): 1/8" = 0.0006;	3/16" = 0.0014	; 1/4" = 0.0026	; 5/16* = 0.0		1/2" = (0.010; 5/8" = 0.016				-
PURGING EQUIPME	NT CODES: B	= Baller; BP = B	ladder Pump;	ESP = Electric	Submersible Pu SAMF	PP = P PLING DATA	eristaltic Pump; A	0 = Other (Specify)		_	
SAMPLED BY (P	RINTLY AFFILI	O'US AC	SL SAI	MPLER SIG	SMATURETS	Anola	have	SAMP	TED AT:	36 SAM	ED AT:	AT S
PUMP OR TUBIN	NG ().	29		BING O		0-0		FIELD-FILTERED:	Y	N Filler Size		mm
FIELD DECONT	and the second se	PUMP Y	the second se	TERIAL CODE	and the second se	ced)		Filtration Equipmen		Y N	1	
_				SAMPLE C		SPECIFICAT		INTENDED ANALYSIS	SAMPL			MPLE PUMP W RATE (mL
22	SAMPLE ID C	A DOMINI		CONTAINER	GO	DE	UME (mL)	AND/OR METHOD	COD	E	🗸 ре	er minute)
15RLT N	02-001	2-6W-0	29	1	HDÏ	2. 24	sem(537 M	APP	1		300
	-					TEX						
	_				-							
<u>.</u>			-	-	-	-						~
EMARKS:					_	-					_	-
	0											
Well Abandoned	U,	-		1/2017	-					_		
Well Measureme		Blass; CG = Clear				ene; S = Silico	ne; T=Teflo	n; O = Other (Specify)			
AMPLING EQUIPM	ENT CODES: A	PP = After Peristaltic FPP = Reverse Flow	Pump; B=	Baller; BP =	Bladder Pump;	ESP = Elect	ric Submarsible	Pump;				

PROJECT: SI of	AFFF Areas (Sa	avannah) M2032.0	0001		Ins	tallation:Bu	rlington AFB	-		-		11/2	,b	017
WELL NO: BR	LTNO2-C	203		SAI	VIPLE ID:	BRETN	02-003	3-6	W-03	2 04	TEBR	LTNO	2-00	3 FJ
WELL		TUBING	DIAMETER			GING DA	TA .	-			PUR	GE PUMP T	YPE V	20
DIAMETER (inches		VOLUME = (TOTAL				17.46 FI	TO W	VATER (fe	PTH 291	25	ORE	BAILER:	1	pp_
(only fill out if a		=(27.1			0.02	gal/ft =		Gal						
EQUIPMENT VOLU	ME PURGE: 1 EC	QUIPMENT VOL. = P			PACITY	X TUBIN		FLOW	CELL VOLUME	Loc	alion (Circl	e one):	_	-
(only fill out If a	applicable) D	N.A	-	gal +(x	Ft) +	gal	=	gal O	Monitorir ther	ng Well	Tempora	ry Well
INITIAL PUMP OR DEPTH IN WELL (f	77	D FI	NAL PUMP O		32,2		RGING	080	2. PURGIN	AT: 08.	57 P		0	5
	4	CUMUL. VOLUME	PURGE	DEPTH	PH	TEMP.	CONE	D	DISSOLVED	ORP	TURBIC	TY CO	DLOR scribe)	ODOR
TIME	VOLUME PURGED (gallens)	PURGED (galions)	(apm)	WATER	(standard units)	(°C)	- mS/cm or		mg/L	(mV)	(NTU	5) (00	schoe)	(describ
	L		mL/min	(feet)		1	μS/cr	m	-		1	1		
0.822			-	29.25	Pun	np S-	rtel	-			-	clow		
0832	110	10	100	-	6.42	9.58	0.24		6,75	-17.6	80.6	broi	5 vn	none
0842	Rid	2,0	100	-	6.49	9178	0,25.	~ +	6.33	-36.2	18.9	cle	ar	non
0852	110	3,0	200		6.49	9.79	0.25	-	6,12	-41.0	7.3		ecr	hon
0857	2.5	3,5	100	-	6,47	9.86	0.25	3	6111	-43,9	4,55	cl	ex	nong
			-	-	2	-	111	-	-	-	-			-
			-	-				-			-			
_			-		$ \downarrow \downarrow$	-7		-						-
			1			0	0	\rightarrow			-			-
		-	1.		-					-		+	*	-
			-	-			-	-	-		-	\rightarrow	>	
WELL CAPACITY (Ga TUBING INSIDE DIA.		75" = 0.02; 1" = 0.0		06; 2* = 0.16; 1/4* = 0.0026;				= 1.47; = 0.010;	12* = 5.88 5/8* = 0.016			-	-	
PURGING EQUIPME		= Bailer; BP = Blac	ider Pump;	ESP = Electric S	Submersible Pu SAM	PP =	Peristaltic Pum		= Other (Specify)	-				
SAMPLED BY (PI FRANKIM	Johnson	ASL	SAM	PLER(S) SIG		ahn.			SAMPL	ING TED AT:	900	SAMPLING		PAT:
PUMP OR TUBIN DEPTH IN WELL	G ',	32,0	TUB	ING	:PE			1	D-FILTERED: Ion Equipment	Y		ter Size N	la	inm
FIELD DECONT	AMINATION:	PUMP Y	N) T	UBING Y SAMPLE C			TION	IIN	DUPLI	CATE: SAMPI	Y	(N) Low Flow	Lean	PLE PUM
	SAMPLE ID CO	ODE	#	CONTAINER			DLUME (mL)	A	NALYSIS OR METHOD	EQUIP	MENT	Sampling	FLOV	V RATE (n r minute)
BRLTNO2	-003-GV	N-032	1.1	1_	PE		50	EPA	+S37M	APK		V	10	9
								+ -						
					-	- +	T	-					-	
	-				-	-11	011	-			-	-	-	
					1			-						~
REMARKS:		9.		1000				-	1	1.1	-			
No Depth	To Worter	Well Abandoned:	due to	017541	vell ono	E, tub	ing diam	ter,	and dia	miter	of W	LM pi	obe	-
weil Abandoned?	t Method: Pro			121/2	01)		_	_			_	_		

÷

AerostarSES...

PROJECT: SI of	AFFF Areas (S	avannah) M2032.0	001		Ins	tallation:Bu	lington AFB			-		
WELL NO: B	RLTNO	3 - Pipaliuc	100	SAM	APLE ID:	3FLTN	03-0	01-GW-02	22 DA	те: 4	120/1-	7
	-	- Luxur		law		GING DAT				-	1	
WELL DIAMETER (inches WELL VOLUME P): 0.7 JRGE: 1WELL	VOLUME = (TOTAL	DIAMETER	H - STATIC	DEPTH TO	27.7	TH: STA TO W WELL CAP		90	OR BAILI	ER: PP	>
(only fill out if	pplicable)	= 27	7 Ft - 19	5.90 ^{FU} ×	0.02	gaVft =	0.170	jal 2				
EQUIPMENT VOLU	ME PURGE: 1 E	QUIPMENT VOL. = P	UMP VOLUME	+ (TUBING CA	PACITY	X TUBIN	G LENGTH) +	FLOW CELL VOLUME	Loca	ation (Circle on	a):	~
(only fill out if	applicable)		= O 1	gal + (V	.00.26°	25 FL	*0.1	gal 5.165	gal Ot	Monitoring W	ell Tempor	ary Well
INITIAL PUMP OR	5	1	NAL PUMP OR		22	PUE	GING	2:44 ENDED	NG	03 PURG		x C.
DEPTH IN WELL (eet): C	CUMUL.	PURGE	DEPTH	D PH	TEMP.	COND		ORP	(gallon TURBIDITY	COLOR	ODOR
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	RATE (gpm)	TO WATER (feet)	(standard units)	(°C)	mS/cm		(WM)	(NTUs)	(describe)	(describe
12:49	0.092	0.092	0.092	-	9.72	8.63	3.10	1 4.14	-264.0	599	brown	have
12:52	0.276	0,368	0.092		9.73	8.66	318	3 3.914	-264.7	18.0	clear	Hour
12:55		0.644	0.092	1	9.72	8.44	319		-2\$3.9		choa	poure
12:58	0.276	0.920	0.092	-	9.69	8.44	318		-2\$3.4	13.4	cten	- nour
13:01	0.276	1.196	0.92	-	9.00	8.70	319	4.10	-755.6	7.7	clan	nono
			1									
- C												
								_			1	
				0	1							
		.75" = 0.02; 1" = 0.04 (t.): 1/8" = 0.0006; 3	/16" = 0.0014;				5° = 1.02; 6° 0.006; 1/2" =	0.010; 5/8" = 0.016				
PURGING EQUIPME				ESP = Electric S	SAME	LING DA	Peristaltic Pum					
SAMPLED BY (P	RINTRAFFILI	Den ASU	SAME	HEB(S) SIGN	NATURE(S)	sold	2	SAMPI	TED AT:	3:03 SAN	DED AT:	DAT:
PUMP OR TUBIN	G U 1	2	TUBI	RIAL CODE:	PE)		FIELD-FILTERED: Filtration Equipmen	Y (Filter Siz		mm
FIELD DECONT	and the second se	PUMP Y		BING Y SAMPLE CO	Ntrepla		TION	DUPLI	CATE:		9	
	SAMPLE ID C	ODE	#0	ONTAINERS	MATE	RIAL	LUME (mL)	INTENDED ANALYSIS AND/OR METHOD	SAMPL EQUIPM	IENT Sa	mpling FLO	MPLE PUMP W RATE (mL per minute)
BRITH		-Gw-027		1	CO	DE	sound	537 M	APP			350
PICCIN	9-081	-00 02.		,	' !R			52.14	111	-	-	
												_
					-					-		
REMARKS:	110	TIL		-								-
F	INd 1	TW = 10	8.80									
Well Abandoned	N Date	Well Abandoned:	04/2	1/201	1							
Well Measureme		1	ər	-1								
MATERIAL CODES: SAMPLING EQUIPM		PP = After Peristaltic P	ump; B = B	aller; BP = B	Bladder Pump;	ESP = Ele	ctric Submersib					
	R	FPP = Reverse Flow Pe	enstance Pump;	SM = Straw M	nethod (Tubing	Gravity Drain);	O = Other	(opecity)				

AerostarSES...

/ELL NO:	AFFF Areas (Savannah) M2032	2.0001	SAM	IPLE ID:		rlington AFB			TE: 7-1/	×	7
VELL NO:	101			SAW	and the second second	GING DAT	A US-	002-6W.	-CILL DA	TE. 9/.	POIL	4
VELL		· TUBI	NG DIAMETER	WEL	L SCREEN I	NTERVAL DEP	TH: STAT	TIC DEPTH			PUMP TYPE	
DIAMETER (inches	D: Cete) (inche L VOLUME = (TOT	es): 1/4	27	uj:Ft -	17.45FI	то W	ATER (feet): 18	.4	OR BAIL	ER: PP	
(only fill out if a	applicable) 2	7.45 =4	AL WELL DEP	H - STATIC 化HFN ×	Ocycy 2	gal/ft =	G. HELL CAP	ACITY				
QUIPMENT VOLU	ME PURGE: 1	EQUIPMENT VOL, =	PUMP VOLUM	E + (TUBING CA	PACITY	X TUBIN	G LENGTH) +	FLOW CELL VOLUM	E Loca	ation (Circle on	e):	
(only fill out if	applicable)		=	gal + #0	0.26 x	2.5 FI) + +	gal = $O_a[6]$		Monitoring W	/ell (Tempora	ary Well
ITIAL PUMP OR	TUBING		FINAL PUMP C	RTUBING	0.0	PUF	RGING	PUR	BING	her TOTAL	VOLUME	
EPTH IN WELL (leet): 2	2	DEPTH IN WEI	L (feet):	22	INIT		2:00 ENDI	ED AT: 12:	12 PURG	ED C	95
		CUMUL.	PURGE		pН	TEMP.	COND	C. Zana and S. S.	A Marcanes A	TURBIDITY	COLOR	ODOR
TIME	VOLUME PURGED	VOLUME PURGED	· (gpm)	TO WATER	(standard units)	(°C)	mS/cm or	OXYGEN mg/L	(mV)	(NTUs)	(describe)	(describe)
	(gallons)	(gallons)		(feet)	urins)		µS/cm	12	1		1.1	
12:03	0.24	0.221	0,08	-	7.85	\$.53	266	\$.82	-34.4	4367	Brown	Neue
12:06	0.24	0.48	0.08	~	7.88	8,51	265	5 6.67	-42,4	14.9	clear	noure
12:09	0.24	0.72	0.08	-	7,84	\$.55	265	G.70	-43.1	10.0	cipa	ucue
12:12	0.24	0.96	0,08	-	7.83	8.56	265	5 6.79	-42.8	5.4	ctea	none
	1.0				1.11		1					
			1	1.00								
	-		-	-			-	-	-		1	
	-		-			-		-	-		-	-
			-		-	-	-	-	-			
-		-	-				-		-		-	
_									1		1	
	1											1.1
	-	1.1.1.1									5	
JBING INSIDE DIA.	CAPACITY (GalJ	0.75° = 0.02; 1° = 0 Ft.): 1/8° = 0.0005;				4" = 0.65; 104; 3/8" = 0		1.47; 12" = 5.88 0.010; 5/8" = 0.016				
URGING EQUIPME			ladder Pump;	ESP = Electric St		PP =	Peristallic Pump	; O = Other (Spec				
AMPLED BY (P	RINT) / AFFIL	27	SAN	IPLERES) SIGN	ATURE(S	prol 0	5		PLING ATED AT:	2:13 SAN	MPLING ENDE	DAT
UMP-OR TUBIN	IG D	22	TUB	ING U	(<u>j</u>		FIELD-FILTERED	Y (N. Filter Sta	·	mm
EPTH IN WELL	(feet):	~	MAT	ERIAL CODE: UBING Y	PE N (repla	ced		Filtration Equipme	ent Type: LICATE:	YC	K.M	
			G	SAMPLE CO	NTAINER	SPECIFICA	TION	INTENDED	SAMPL	ING LOV	W Flow SAN	APLE PUMP
	SAMPLE ID	CODE	#	CONTAINERS		ERIAL VO	LUME (mL)	ANALYSIS AND/OR METHO	D COD			W RATE (ml
BRLTNO	3-002	- GW-02	22	1	HP	PE 2	serval	537 M	APP	(0.	08
												-
-						2.1						
					-							
	1.0	-								-		
EMARKS:	Depth t	ana fer	NIA	due to	25	w here	f we	11, diamet	er of Pi	ly flore	y t dimme	* ~
	(Dela	of water	hevel pro	be Ende	£ 50 v	plitz	DIWS	11, diamet = 18,4		*		
				21/2017		U			-		_	
Vell Measuremen		Glass; CG = Clear G		olyethylone: PF	= Polypropy	ene: S = Sill	cone: T=Tef	on; O = Olher (Spec	fy)	_		
		APP = After Peristaltic			adder Pump;	ESP = Ele	ctric Submersibl O = Other (e Pump;				

ASL Project No: M2032.0001 Installation: Burling for ARB Date: 04 / 20/2017 Sample Technician(s): Front Lin Johnson Station ID: BRLTN01-001 Location Description: ISD Af Jue South from Monitoring well BR LTN01-MW-V18P2 Surface Water and/or Sediment Sample Collected from (circle one): River/Stream Trench Other Sample ID: Sample Collection Time: Sample Depth: Sediment Description: Collection Method: Preservative: SurFACE WATER SAMPLE Sample ID: Sample Collection Time: Sample Collection Method: Preservative: SURFACE WATER SAMPLE Sample ID: Collection Method: Sample Collection Time: Collection Method: Preservative: SURFACE WATER SAMPLE Sample ID: Collection Method: Collection Time: Collection Method: Collection Method: Collection Time: Collection Time: Collection Time: Collection Method: Collection Method: Collection Method: Collection Time: Collection	
Date: 04 /20/2017 Sample Technician(s): From Lin Johnson Station ID: BRLTN01-001 Location Description: 150 ft dve South from Monitering well BRETN01-MW-V18P2 Surface Water and/or Sediment Sample Collected from (circle one): Channel/Ditch Holding Pond/Lagoon Lake/ River/Stream Trench Other Sample ID: Sample Collection Time: Sample Depth: Sediment Description: Collection Method: Apalysis/Method: Sample Container: SurFACE WATER SAMPLE Sample ID: Sample Collection Time: Sample Depth: Set Surface Water Sample Collection Method: Preservative: Sample Container: Sample Collection Time: Sample Depth: Collection Method: Sample Depth: Sample Collection Time: Sample Depth: Sample Collection Time: Sample Depth: Collection Method: Sample Depth: Sample Collection Time: Sample Depth: Sample Collection Time: Sample Depth: Sample Collection Time:	
Sample Technician(s): FronkLin Johnson Station ID: BRLTN01-001 Location Description: 150 fH dive South from Monitering well BRETN01-MW-V18P2 Surface Water and/or Sediment Sample Collected from (circle one): River/Stream Trench Other Sample ID: Sample Collection Time: Sample Depth: Sediment Description: Collection Method: Apalysis/Method: Sample Container: Sample ID: Sample Collection Time: Sample Container: Collection Time: Collection Time: Sample Container: Collection Time: Collection Time: Sample Depth: Collection Time: Collection	
Station ID: BRLTN01-001 Location Description: 150 fH idve south from Monitoring well BRLTN01-MW- V1BP2 Surface Water and/or Sediment Sample Channel/Ditch Holding Pond/Lagoon Lake/ Surface Water and/or Sediment Sample Channel/Ditch Holding Pond/Lagoon Lake/ Surface Water and/or Sediment Sample Channel/Ditch Holding Pond/Lagoon Lake/ Surface Water and/or Sediment Sample Channel/Ditch Holding Pond/Lagoon Lake/ Surface Water and/or Sediment Sample Sample Collection Time: Sample Collection Time: Sample Collection Time: Sample Depth: Sample Container: Surface Water SamPle Preservative: Surface Water SamPle Sample Container: Sample Collection Time: Collection Time: Collection Time: Sample Collection Time: Sample Depth: Sample Collection Time: Sample Collection Time: Sample Collection Time: Sample Collection Time: Sample Depth: Sample Collection Time: Sample Collection Time: Sample Collection Time: Sample Collection Time:	
Station Description: 15 b AF is the south from Monitoring well BRITNDI-MW-V1BP2 Surface-Water and/or Sediment Sample Collected from (circle one): Channel/Ditch Holding Pond/Lagoon Lake/ Surface-Water and/or Sediment Sample Collected from (circle one): Channel/Ditch Holding Pond/Lagoon Lake/ Surface-Water and/or Sediment Sample Collected from (circle one): River/Stream Trench Other Sample ID: Sample Collection Time:	
Surface Water and/or Sediment Sample Collected from (circle one): Channel/Ditch River/Stream Holding Pond/Lagoon Lake/ Sediment SAMPLE Sediment SAMPLE Sediment Description:	
Sunace water and/or sedment sample River/Stream Trench Other Collected from (circle one): River/Stream Trench Other Sample ID: Sample Collection Time:	
Sample ID: Sample Collection Time: Sample Depth: Sediment Description: Collection Method: Analysis/Method: Sample Container: Preservative: SurFACE WATER SAMPLE Sample Collection Time: Sample ID: Sample Collection Time: Sample Depth: Collection Method: Sample Depth: Sample Collection Time: Analysis/Method: Sample Container:	
Sample Depth: Sediment Description: Collection Method: Analysis/Method: Sample Container: Preservative: SurFACE WATER SAMPLE SurFACE WATER SAMPLE Sample ID: Sample Collection Time: Sample Depth: Collection Method: Analysis/Method: Sample Container:	
Collection Method: Analysis/Method: Sample Container: Preservative: SurFACE WATER SAMPLE SurFace water sample Sample ID: Sample Collection Time: Sample Depth: Collection Method: Analysis/Method: Sample Container:	
Sample Container: Preservative: SURFACE WATER SAMPLE Surface water sample Sample ID: Sample Collection Time: Sample Depth: Collection Method: Analysis/Method: Sample Container:	
Surface water sample Sample ID:	
Sample ID: Sample Depth: Analysis/Method:	
Sample Depth: Collection Method: Analysis/Method: Sample Container:	
Analysis/Method: Sample Container:	
Preservative: Water Quality (circle one): Clear Cloudy Turb	
	oid Other
Groundwater Sample Collected from (circle one): Other	
GROUNDWATER GRAB SAMPLE	*
Sample ID: BRLTN01-001-GW-013 Sample Collection Time: 1425	-
Sample Depth: 13 F7 B65 Collection Method: PP	
Analysis/Method: EPA 537M Sample Container: 250 mLPE	
Preservative: N/A Water Quality (circle one): Clear Cloudy (Turb	
REMARKS:	oid Other

AerostarSES... SAMPLE COLLECTION LOG SEDIMENT AND SURFACE WATER AFFF SLOMAHA DISTRICT Project Name: ASL Project No: -M2027-0003 12:532.0001 Installation: WRIGHT PATTERSON AFBPS Burlington ANG Date: 114/17 Sample Technician(s): oleb Brun baus 1 Station ID: RLINU1-002 Location Description: NED DANC 50 56 to Guard Shuck 014 Type(s) of Sample (circle all that apply): Ground Water Sediment Surface Water Channel/Ditch Holding Pond/Lagoon Lake/Pond Sample Collected from (circle one): **River/Stream** Trench Other Rode SEDIMENT SAMPLE Sample ID: Sample Collection Time: Sample Depth: Sediment Description: Collection Method: Analysis/Method: Preservative: Sample Container: SURFACE WATER SAMPLE Sample ID; Sample Collection Time: Sample Depth: Collection Method: Sample Container: Analysis/Method: Preservative: Water Quality (circle one): Clear Cloudy Turbid Other GROUND WATER SAMPLE Sample 10: BRUINO1-002-6-1-015 Sample Collection Time: 0850 Sample Depth: 15 drub V Collection Melhod: .50 STAM Analysis/Method: Sampla Containon 2 NIA Prosorvative: Water Quality (cirole one); Glear CLOURIN Turbid) Other

COMMENTS:

2 samples Jakan Lae to turbide

Project Name: SI of AFFF Areas (Sav	vannah)		
ASL Project No: M2032.0001		~	
Installation: Burlington A	DB		
Date: 4/14/97			·
Sample Technician(s): Kales Brunk	naury h) x	
Station ID: BRETNOI	0		
Location Description: Qo ° E IV Pro	r Form RD 15 M	chrs	
Surface Water and/or Sediment Sample	Channel/Ditch	Holding Pond/Lagoon	Lake/Pond
Collected from (circle one):	River/Stream	Trench Other	? creek
		\bigcirc	
	SEDIMENT SA		
Sample ID: BRLTN01-003			
Sample Depth: <u>0-0.5</u>	Sedir	nent Description: Silly Sa	nd
Collection Method: grab		Analysis/Method: 5:37M	
Sample Container: * HDPE		Preservative: N/A	
	SURFACE WATER	SAMPLE	
Sample ID: BRLtN01-003-5w	-ou Vinsinsin / Sample	Collection Time: 13/6	
Sample Depth: 0 - 0.5		ollection Method: grab	
Analysis/Method: S37/M		ample Container: HD	06
Preservative: V/A		ality (circle one): Clear Clou	
			dy fublic Other
	Hydropun	ch Monitoring Well Tempo	rary Well
Groundwater Sample Collected from Crede or	ne): Other	en nernernig frem fenge	
\sim	Other		
	GROUNDWATER GR	AB SAMPLE	
Sample 10:	Sample	Collection Time:	
Sample Depth:)/ co	ollection Method:	- 5
Analysis/Method:	Sa Sa	ample Container:	
Preservative:	Water Qu	ality (circle one): Clear Clou	dy Turbid Other
EMADKO			
BRLTN-R	5-00 assoc	m/ BRLTWOI-002	5-5D-001/ms/msD/9
	54 M		
M2022.0001	0.01		10/10/17
M2032.0001	C-21		10/19/17

Project Name: SI of	AFFF Areas (Savar	nnah)				
ASL Project No: M203	32.0001					
Installation: R	urlington		10 10			- 1
Date: 4/	18/14	-				
		-gh				
	RLENOZ					
Location Description:	à LONE to	Mustang Pass	+ 10 maters			
Surface Water and/or S	ediment Sample	Channel Ditch	Holding P	ond/Lagoon	Lake/Pond	
Collected from (c	ircle one):	River/Stream	Trench	Other		
		SEDIMENT SAI	VIPLE			
Sample ID. BR	4TN02-004-5	D-chu Sample	Collection Time:	1454		
Sample Depth:						
1.5 D Manual 1.4	and the second s			Silty Sand 537		
Collection Method:	41000		Preservative:			
	IVPE	SURFACE WATER		10 [1]		
0				15.0		
	RETNOZ- aug-SW		Collection Time:			-
Sample Depth:		Co	illection Method:	grab		
Analysis/Method:		Sa	imple Container:	HDPE		_
Preservative:	IV IA	Water Qu	ality (circle one):	Clear Cloudy	Turbid Othe	ər
Groundwater Sample Collec	ted from circle one;): Other) Well Temporary	/ Well	_
		GROUNDWATER GR	AB SAMPLE			
Sample ID:	X	B Sample	Collection Time:			
Sample Depth:		10/				
Analysis/Method:	\sim	1	-			
Preservative:			-	Clear Cloudy		er
REMARKS:				×		_
,						
M2032.0001		C-22			10/19/17	

Project Name:	SI of AFFF Areas (Sava	innah)			
ASL Project No: I	M2032.0001				
Installation:	Bucling Lar				
Date:	4/18/97				
ample Technician(s):	Kaleb Brum	baugh		-	
Station ID:	BRUTNO3	-003 PS BR	.UN03		
Location Description:	211°5W to	NGO Drive	80 meters		
Surface Water and	l/or Sediment Sample	Channel/Ditch	Holding P	ond/Lagoon	Lake/Pond
Collected fro	om (circle one):	River/Stream	Trench	Other	Creek
		SEDIMENT	SAMPLE	×.	
Sample ID:	BRLTN03-003	-SD-001 Sar	nple Collection Time:		
Sample Depth:	0-0.51	S	ediment Description:	Sand trace	silt
Collection Method:	grab		Analysis/Method:	537M	
Sample Container:	HOPE		Preservative:	NIA	
		SURFACE WA	TER SAMPLE		
Sample ID:	BRLENU3-003-	Sw-001 Sar	nple Collection Time:	1356	
Sample Depth:	0-0,51		Collection Method:	grab	
Analysis/Method:	537 M		Sample Container:	HDPE	
Preservative: _	NIA	Wate	r Quality (circle one):	Clear Cloudy	Turbid Other
Foundwater Sample C	ollected from (circle one	Other		Well Tempora	ry Well
0		GROUNDWATER	and a state of the second second second		
Sample ID:		San	ple Collection Time:		
		$- \times h$	Collection Method: _		
Analysis/Method:		-/3	Sample Container: _	and the second	
Preservative:		Wate	Quality (circle one):	Clear Cloudy	Turbid Other
EMARKS:		/	\backslash		
			`		
			×		

Project Name:	SI of AFFF Areas (Omaha)								
ASL Project No:	M2027.0003									
Installation:	Installation: Burlington ANG									
Date:	04/20/2017									
ample Technician(s): Franklim Johnson Station ID: BRLTN04-001-SS-00TFS BRLTN04-001										
Station ID:	-SRETNO4-001-55-	OOT BY BREIN	24-001							
Location Description:	Aprox 40 PF SW	from edge of	Foxtrot Runway							
	d/or Sediment Sample om (circle one):	Channel/Ditch River/Stream	Holding Pond/Lago	oon Lake/Pond Other						
		SEDIMENT SAM	/IPLE							
Sample ID:		Sample	Collection Time:							
Sample Depth:			ent Description:							
Collection Method:		~ ~	nalysis/Method:							
Sample Container:		tol.	Preservative:							
		SURFACE WATER	SAMPLE							
Sample ID:	BRLTNO4-001-GW-	=013 Sample	Collection Time:							
	-13 Ft BGS I		llection Method:							
Analysis/Method:			mple Container:							
Preservative:			ality (circle one): Clear	Cloudy Turbid Other						
Groundwater Sample 0	Collected from (circle one):	Hydropund Other	ch) Monitoring Well	Temporary Well						
	G	ROUNDWATER GRA	AB SAMPLE							
Sample ID:	BRLTNO4-001-GU	1-013 Sample	Collection Time: 123	35						
Sample Depth:	13 PJ BGS		llection Method: PP							
Analysis/Method:	EPA S37M		mple Container: 250 m	nl PE						
Preservative:	n/a	Water Qua	ality (circle one): Clear	Cloudy Turbid Other						
REMARKS:										
REMARKS:										

Project Name: SI of AFFF Areas	(Omaha)
ASL Project No: M2027.0003	
Installation: Burlington AK	ß
Date: 04 20 2017	
Sample Technician(s): Franklin Joh	
Station ID: BLRTN 04	-002
Location Description: Ap_{MX} SO -	ft NE from edge of Foxtrot Runway,
Surface Water and/or Sediment Sam Collected from (circle one):	nple Channel/Ditch Holding Pond/Lagoon Lake/Pond River/Stream Trench Other
	SEDIMENT SAMPLE
Sample ID:	Sample Collection Time:
Sample Depth:	Sediment Description:
Collection Method:	Analysis/Method:
Sample Container:	
	SURFACE WATER SAMPLE
Sample ID:	
Sample Depth:	Collection Method:
Analysis/Method:	Sample Container:
	Water Quality (circle one): Clear Cloudy Turbid Other
Groundwater Sample Collected from (circ	Other
DALT	GROUNDWATER GRAB SAMPLE
Sample ID: <u>BRLTNO 4-0</u>	002-GW-018 Sample Collection Time: 0410
Sample Depth: <u>18 ff R65</u>	Collection Method: PP
Analysis/Method: <u>EPA 537M</u>	Sample Container: 250 mLPE
Preservative: <u>h</u> /A	Water Quality (circle one): Clear Cloudy Turbid Other
REMARKS:	

Project Name: SI of AFFF Are	eas (Savannah)								
ASL Project No: M2032.0001									
Installation: Burlinston	ANG								
Date: 04/20/	2017								
ample Technician(s): Frankly Johnson									
Station ID: BRLTN 0	4-003								
Location Description: Apox 50	If NE from edge of Foxtoot Runway.								
Surface Water and/or Sediment S Collected from (circle one)									
	River/Stream Trench Other								
	SEDIMENT SAMPLE								
Sample ID:	Sample Collection Time:								
Sample Depth:	Sediment Description:								
Collection Method:	Analysis/Method:								
Sample Container:	Preservative:								
	SURFACE WATER SAMPLE								
Sample ID:	Sample Collection Time:								
Sample Depth:	Collection Method:								
Analysis/Method:	Sample Container:								
Preservative:	Water Quality (circle one): Clear Cloudy Turbid Other								
Groundwater Sample Collected from ((circle one): Monitoring Well Temporary Well Other								
	GROUNDWATER GRAB SAMPLE								
Sample ID: BRLTN04-	003-GW-018 Sample Collection Time: 1020								
	FF BGS Collection Method: PP								
Analysis/Method: EPA 637 /	M Sample Container: 250 mL PE								
Preservative: n/a	Water Quality (circle one): Clear Cloudy (Turbid) Other								
REMARKS:									

r roject Name.	SI of AFFF Areas (Savannah)								
ASL Project No:	M2032.0001								
Installation:	Burlinston ANG								
	04/20/2011								
Sample Technician(s): Franklin Johnson									
Station ID:	BRLTN04-004								
ocation Description:	Aprox 50 ft NE from,	edge of For	tot Runn	my.					
Surface Water and	l/or Sediment Sample Chann	el/Ditch	Holding P	ond/Lag	oon	Lake/Por	ıd		
	om (circle one): River/S	stream	Trench		Other				
	SE	DIMENT SAMPI	.E		4				
Sample ID:		Sample Col	lection Time:						
Sample Depth:		Sediment	Description:						
Collection Method:			ysis/Method:						
- Sample Container:			Preservative:						
	SURF	ACE WATER SA							
Sample ID:		Sample Col	lection Time:						
Sample Depth:		Collec	tion Method:						
			le Container:						
Preservative:		Water Quality	(circle one):	Clear	Cloudy	Turbid	Qther		
roundwater Sample C	collected from (circle one):	Hydropunch) Other	Monitoring) Well	Temporary	Well			
		WATER GRAB	SAMPLE						
Sample ID:	3RLTN04-004-GW-018 3RLTN04-004-GW-918	Sample Col	lection Time:	1200)				
Sample Depth:	3RLTN 04-004-6W-918	Collec	tion Method:	PP					
Analysis/Method:	EPA S37M 18+1 BBS		e Container:	250	mL PE				
	no	Water Quality	(circle one):	Clear	Cloudy	Turbid	Other		
Preservative:									

Project Name: SI of AFFF Areas (Sa	avainah)
ASL Project No: M2032.0001	
Installation: Burlington A	RB
Date: 04/19/2017	
ample Technician(s): <u>B. Odam</u>	F. Johnson
Station ID: BRLTNOS-C	
ocation Description: Apox 200 Pt	heading SIN of off main Running
Surface Water and/or Sediment Sample Collected from (circle one):	
	River/Stream Trench Other
	SEDIMENT SAMPLE
Sample ID:	Sample Collection Time:
Sample Depth:	Sediment Description:
Collection Method:	Analysis/Method:
Sample Container:	Preservative:
	SURFACEWATERSAMPLE
Sample ID:	Sample Collection Time:
Sample Depth:	
Analysis/Method:	Sample Container:
Preservative:	Water Quality (circle one): Clear Cloudy Turbid Other
roundwater Sample Collected from (circle o	one): Other
	GROUNDWATER GRAB SAMPLE
Sample ID: BRLTN05-001-	GW-011 Sample Collection Time: 1115
Sample Depth: 17 ff BGS	Collection Method: <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
Analysis/Method: EPA 537M	Sample Container: 250 mL PE
	Water Quality (circle one): Clear Cloudy Turbid Other
Preservative: N/A	

Project Name: S	l of AFFF Areas (Savar	nnah)								
ASL Project No: M	2032.0001									
Installation: Burlington ANG										
Date: 04/(0/201)										
Sample Technician(s):	B. Odom, Fran	nklin Johnson)							
Station ID:	BRLTN05-003	FT BRLTN05	-002 .							
Location Description:	ten 200 mot	iers heading NE	from edge of	Main Runwa	ప					
Sturface Water and/o Collected from		Channel/Ditch River/Stream	Holding Po Trench	nd/Lagoon Other	Lake/Pond					
	~	SEDIMENT S	AMPLE							
Sample ID:		Samp	le Collection Time:							
Sample Depth:		Sec	liment Description:							
Collection Method:		TT	Analysis/Method:							
Sample Container:		tal	Preservative:							
		SURFACE WATE	RSAMPLE							
Sample ID:		Samp	le Collection Time:							
Sample Depth:			Collection Method:							
			Sample Container:	/	<u> </u>					
Preservative:		Water 0	Quality (circle one):	Clear Cloudy	Turbid Other					
Groundwater Sample Co	llected from (circle one)): Hydropu Other_	unch Monitoring	Well Temporary	/ Well					
BRLTNO	5-002-GW-93	GRÓUNDWATER G	RAB SAMPLE							
Sample ID: B	RLTNOS-002-GV	N-033 Sampl	e Collection Time:	1655						
Sample Depth:	13 FL 865		Collection Method:	9 g						
Analysis/Method: _ T	EPA 537 M		Sample Container:							
Preservative:	n/a		uality (circle one):		Turbid Other					
BEMARKS: 3 bottle		1 normal +1M								
		and 1 d	10 licate sam	re						

AFFF Areas (Savannah District) AFFF Site Inspection Project# M2032.0001 Burlington Air National Guard Base				BORING LOG - BRLTN01-001 (Page 1 of 1) Start Date : 04/20/17 End Date : 04/20/17 Northing : 721506.03 Easting : 1470502.76 Surface Elev. (ft)* : 311.90 Total Depth (ft)** : 15.0						I) Site Name Drilling Compan Drilling Method Driller Borehole Diame Boring Completi Abandonment D DTW During Dril Logged By	: Geoprobe 7822DT : Chris Aldrich ter : 2.25 in. on : Abandoned Bentonite Chips ate : 04/20/17	
DEPTH IN FEET (BGS)	INTERVAL	% RECOVERY	Water Levels During Drilling DESCR	*Nor Datu **Be (BGS	asurements th American Vertical Im (NAVD88) feet (ft) low Ground Surface S) feet (ft)	PID (ppm)	USCS	Munsell Soil Color	Depth to Water (DTW)	SAMPLE TYPE	SAMPLE ID	REMARKS
0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	2	100	(0.0 - 3.0) SILTY SAND, 10 sub-angular fine gravel, mo (3.0 - 5.0) SAND, well grad fine to coarse grained, no o (5.0 - 9.0) SILTY SAND, 10 grained sand, ~ 5% silt, we (9.0 - 15.0) SILT, 10YR 5/1 color and texture, wet, no o) ed, 1 odor) YR 4 t belc	o odor 0YR 6/1, gray, /3, brown, fine ww 8.5 ft bgs	0	SM SW			SO	BRLTN01-001-SO-008 Note: Interval 7.0 - 8.0 ft BRLTN01-001-GW-013 Note: Interval 11.0 - 15.0 ft	Geoprobe SP16 Screen Interval (11.0 - 15.0 ft)
	Total Depth of Boring 15.0 feet											

		AFF	F Ar AF Pro	erostar SES reas (Savannah District) FF Site Inspection oject# M2032.0001	LLC	BORING LC Start Date End Date Northing Easting Surface Elev. (ft)* Total Depth (ft)*	: 04 : 04 : 72 : 14	4/19/ 4/19/ 2165 4705- 11.21	(Pag 17 17 1.86 49.34	ge 1) Site Name Drilling Company Drilling Method Driller Borehole Diametr Boring Completio Abandonment Da DTW During Drill Logged By	: Geoprobe 7822 DT : Chris Aldrich er : 2.25 in. n : Abandoned Bentonite Chips ate : 04/19/17
	DEPTH IN FEET (BGS)	INTERVAL	% RECOVERY	Water Levels During Drilling DESCRI	*Nor Datu **Be (BGS	th American Vertical m (NAVD88) feet (ft) low Ground Surface S) feet (ft)	PID (ppm)	USCS	Munsell Soil Color	Depth to Water (DTW)	SAMPLE TYPE	SAMPLE ID	REMARKS
	0	1	100	(0.0 - 3.0) SILTY SAND, 10 sub-angular fine gravel, stro	ong fu	uel odor	68	SM					No temporary well installed.
	4			(3.0 - 5.0) SAND, well grade fine to coarse grained, mois (5.0 - 15.0) SAND, poorly gr black, fine grained, strong fr below 8 ft bgs	st, str	ong fuel odor	- 112	sw					
	6 	2	76								SO	BRLTN01-002-SO-007 BRLTN01-002-SO-907 Note: Interval 6.0 - 7.0 ft	
	10 - 11 - 11 - 12 -	3	100				95	SP					
וט- וט-בטיד הגידוטרטואוגעטביטטטו טוג וואף טו או דר אינשא (טפאמווומו שאי)וטטווואַ בטע אינו טב	13 - - - 14 - - - - - - - - - - - - - - - - - - -			Total Depth of Boring 15.0 f	feet						GW	BRLTN01-002-GW-015 Note: Interval 11.0 - 15.0 ft	Geoprobe SP16 Screen Interval (11.0 - 15.0 ft)

			erostar SES	LIC	BORING LC Start Date End Date	: 04	1/18/	_TN((Paç 2017 2017	ge 1)	Site Name Drilling Compar Drilling Method Driller Borehole Diame Boring Complet	: Geoprobe 7822 DT : Chris Aldrich eter : 2.25 in.
		AF Prc	FF Site Inspection ject# M2032.0001 Air National Guard Base		Northing Easting Surface Elev. (ft)* Total Depth (ft)**	: 14	4708 26.01	4.44 01.08	3			Abandonment I DTW During Dr Logged By	Chips Date : 04/21/17
DEPTH IN FEET (BGS)	INTERVAL	% RECOVERY	Water Levels During Drilling DESCRI	*Nor Datu **Be (BGS	asurements th American Vertical im (NAVD88) feet (ft) low Ground Surface S) feet (ft)	PID (ppm)	USCS	Munsell Soil Color	Depth to Water (DTW)	SAMPLE TYPE		SAMLE ID	Temporary Well: BRLTN02-001 Elev (TOC): 328.41
0- 1- 2- 3- 4-	1	100	(0.0 - 13.0) SILTY SAND, fi grained, 10YR 4/3, brown, rounded cobbles to fine gra	~ 20%	6 well	0		Z		SS	BRLT	N02-001-SS-001 N02-001-SS-901 Vote: Interval 0.0 - 0.5 ft	
5 6 7 8 9 10 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 27 28 29 30 30		64	grading to ~10% well round	ded fir	ne gravel	0	SM						Riser 0.75 in
11 12 13 14 15	3	64	(13.0 - 19.0) SAND, poorly grayish brown	grade	ed, 10YR 5/2,	0							Sch 40 PVC
16 17 18 19 20	4	68	(19.0 - 25.0) SILTY SAND, brown, fine grained sand, n	10YF	R 3/3, dark or. wet below	0	SP			SO		N02-001-SO-020 lote: Interval	diameter borehole
21 22 23 24	5	70	21 ft bgs.		,		SM		•			19.0 - 20.0 ft	
25 26 27 28 28		70	(25.0 - 30.0) SILTY SAND, grayish brown, fine grained	10YF I, no c	R 4/2, dark odor, wet	-	SM						Screen 20.0 - 30.0 ft bgs 0.010 in. Prepack machine slot Sch 40 PVC
30-			Total Depth of Boring 30.0	feet									End Cap

	AFF	F Ar AF Prc	erostar SES reas (Savannah District) FF Site Inspection oject# M2032.0001	Suc	BORING LC Start Date End Date Northing Easting Surface Elev. (ft)* Total Depth (ft)**	: 0 : 0 : 7 : 1 : 3	4/18/ 4/18/ 2070	(Pag 2017 2017 0.71 10.10	ge 1	002 of 1	1)	Site Name Drilling Compar Drilling Method Driller Borehole Diame Boring Complet Abandonment I DTW During Dr Logged By	: Geoprobe 7822 DT : Chris Aldrich eter : 2.25 in. : Abandoned Bentonite Chips Date : 04/21/17
DEPTH IN FEET (BGS)	INTERVAL	% RECOVERY	Water Levels During Drilling DESCR	*Nor Datu **Be (BG	asurements th American Vertical im (NAVD88) feet (ft) slow Ground Surface S) feet (ft)	PID (ppm)	USCS	Munsell Soil Color	Depth to Water (DTW)	SAMPLE TYPE		SAMPLE ID	Temporary Well: BRLTN02-002 Elev (TOC): 327.43
0	1	100	(0.0 - 5.0) SILTY SAND, 10 sub-angular gravels, moist,			0	SM			SS		N02-002-SS-001 lote: Interval 0.0 - 0.5 ft	
6	2	64	(5.0 - 13.0) SAND, well gra brown, fine to medium grain sub-angular gravel, moist, n	ned, [,]	~ 5%	0	sw						Riser 0.75 in
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29 30	3	64	(13.0 - 15.0) SAND, well gr grayish brown, fine to medi sub-angular gravel, moist,	ium g no od	rained, ~ 5% lor	- 0	sw						Sch 40 PVC
16 17 18 19 20	4	68	(15.0 - 21.0) SAND, poorly grayish brown, fine grained	gradı I, moi	ed, 10YR 5/2, st no odor	0	SP			SO		N02-002-SO-020 lote: Interval	diameter borehole
21 22 23 24 25	5	70	(21.0 - 30.0) SILTY SAND, dark grayish brown, uniforn wet below 21.0 ft bgs						V	-		19.0 - 20.0 ft	Screen
26 27 28 29	6	100					SM						20.0 - 30.0 ft bgs 0.010 in. Prepack machine slot Sch 40 PVC
30-			Total Depth of Boring 30.0	feet							1		End Cap

	AFF	F Ar AF Pro	erostar SES reas (Savannah District) FF Site Inspection nject# M2032.0001	BORIN Start Date End Date Northing Easting Surface Elev. (Total Depth (ft	: : : (ft)* :	04/1 04/1 720 147 325 35.0	(18/20 18/20 18/33 10962 5.28	Pag 017 017 .94	e 1		1)	Site Name Drilling Compar Drilling Method Driller Borehole Diame Boring Complet Abandonment E DTW During Dr Logged By	: Geoprobe 7822 DT : Chris Aldrich eter : 2.25 in. ion : Abandoned Bentonite Chips Date : 04/21/17
DEPTH IN FEET (BGS)	INTERVAL	% RECOVERY	Water Levels During Drilling DESCRI	Measurements *North American Verti Datum (NAVD88) feet **Below Ground Surfa (BGS) feet (ft) PTION	i (ft) ice		USCS	Munsell Soil Color	Depth to Water (DTW)	SAMPLE TYPE	S	Sample ID	Temporary Well: BRLTN02-003 Elev. TOC: 327.95
0- 1- 2- 3- 4-		100	(0.0 - 13.0) SILTY SAND, 1 5% sub-angular fine gravel	0YR 3/2, brown, ~		0				SS	N	N02-003-SS-001 ote: Interval 0.0 - 0.5 ft	
5- 6- 7- 8- 9- 10-	2	64				0 S	SM						
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	3	78	(13.0 - 25.0) SAND, poorly light grayish brown, fine gra texture and color, moist, no	ined uniform		0							Riser 0.75 in Sch 40 PVC
16 17 18 19 20	4	84	20.0 ft bgs, color grading to	brown 10YR 4/2		0 S	SP						— Open 2.25 in. diameter borehole
21- 22- 23- 24- 25-	5	88				0				SO	N	N02-003-SO-025 ote: Interval	
26- 27- 28- 29- 30-	6	88	(25.0 - 30.0) SILTY SAND, grayish brown, uniform colc odor, wet			0 S	SM		•			'4.0 - 25.0 ft	Screen
31- 32- 33-		100											25.0 - 35.0 ft bgs 0.010 in. Prepack machine slot Sch 40 PVC

	A	FFI	F Ar AF Pro	eas (Savannah District) FF Site Inspection ject# M2032.0001 Air National Guard Base	5	BORING LC Start Date End Date Northing Easting Surface Elev. (ft)* Total Depth (ft)**	: 04 : 04 : 72 : 14	4/18/2 4/18/2 21022 47042 24.45	(Pag 2017 2017 3.55 28.44	ge 1		Driller Borehole Dian Boring Comple Abandonment	d : Geoprobe 7822 DT : Chris Aldrich neter : 2.25 in. etion : Abandoned Bentonite Chips
DEPTH IN FEET	(୧୨J)	INTERVAL	% RECOVERY	Water Levels During Drilling DESCR	*Nor Datu **Be (BG	asurements th American Vertical im (NAVD88) feet (ft) low Ground Surface S) feet (ft)	PID (ppm)	USCS	Munsell Soil Color	Depth to Water (DTW)	SAMPLE TYPE	SAMPLE ID	Temporary Well: BRLTN03-001 Elev. TOC: 327.4
0 1 2 3 4 5	mhinihinhinihi	1	100	(0.0 - 7.0) SAND, well grad brown, ~ 5%, fine well rour no odor	led, 7 nded (.5YR 4/3, gravel, damp,	0	sw			SS	BRLTN03-001-SS-001 Note: Interval 0.0 - 0.5 ft	
01:00-2001 10 01:00-2001 10 01:00-2001 10 01:00-2001 11 12:00-2001 11 12:00-2001 11 12:00-2001 11 12:00-2001 11 12:00-2001 11 12:00-2001 12 13:00-2001 12 14:00-2001 12 15:00-2001 12 16:00-2001 12 17:00-2001 12 18:00-2001 12 20:00-2001 21	<u>minninninninni</u>	2	100	(7.0 - 13.0) SAND, well gra brown, medium to fine grai	aded, ined, d	10YR 4/3, damp, no odor	0	sw					Riser 0.75 in Sch 40 PVC
12 13 13 14 15 16	minimini	3	100	(13.0 - 22.0) SILTY SAND, fine grained, damp, no odd		R 4/3, brown,	0			v	SO	BRLTN03-001-SO-014 Note: Interval 13.0 - 14.0 ft	— Open 2.25 in. diameter borehole
	<u> </u>	4	100				0	SM					Screen 15.0 - 25.0
21 22 23 24 25	minim	5	100	(22.0 - 25.0) SILTY SAND, fine grained, wet, no odor Total Depth of Boring 25.0		R 3/1, brown,	0	SM					ft bgs 0.010 in. Prepack machine slot Sch 40 PVC

	AFF	F Ar AF Pro	erostar SES reas (Savannah District) FF Site Inspection oject# M2032.0001	Luc	BORING LC Start Date End Date Northing Easting Surface Elev. (ft)* Total Depth (ft)**	: 04 : 04 : 72 : 14	4/18/2 4/18/2 2105/ 4704 23.78	(Pag 2017 2017 0.72 50.06	ge 1)	Site Name Drilling Compar Drilling Method Driller Borehole Diame Boring Complet Abandonment I DTW During Dr Logged By	ny : C : G : C eter : 2. tion : A C Date : 04 iilling (ft) : 10	FFF Area 03 ascade Drilling eoprobe 7822 DT hris Aldrich 25 in. bandoned Bentonite hips 4/21/17 5.0 ranklin Johnson
DEPTH IN FEET (BGS)	INTERVAL	% RECOVERY	Water Levels During Drilling	*Nor Datu **Be (BGS	asurements th American Vertical m (NAVD88) feet (ft) low Ground Surface S) feet (ft)	PID (ppm)	USCS	Munsell Soil Color	Depth to Water (DTW)	SAMPLE TYPE		Sample ID	Tempora BRLTNO Elev. TC	ary Well: 3-002 IC: 326.60
0- 1- 2- 3- 4-	1	100	(0.0 - 2.0) SANDY SILT, 7.3 well rounded gravel, damp, (2.0 - 8.0) SILTY SAND, 7.3 brown, fine grained, ~ 5% f gravel, damp, no odor	no o 5YR (dor B/2, dark	0	ML			SS		N03-002-SS-001 lote: Interval 0.0 - 0.5 ft		
5 6 7 8 9	2	60	(8.0 - 10.0) SILTY SAND, 7 brown, fine to medium grain	7.5YR ned, c	3/2, dark Jamp, no odor	0	SM SM							— Riser 0.75 in Sch 40 PVC
10 11 12 13 14	3	64	(10.0 - 18.0) SAND, poorly dark brown, fine grained, m	grade loist,	ed, 10YR 3/2, no odor	0	SP					N/02 002 00 045		— Open 2.25 in. diameter borehole
15 16 17 18 19	4	64	wet, 16.0 ft bgs (18.0 - 25.0) SAND, poorly dark brown, fine grained, w			0			▼	SO	. r	N03-002-SO-015 lote: Interval 14.0 - 15.0 ft		
$ \begin{array}{c} 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 25 \\ \end{array} $	5	100	20.0 ft bgs, color grades to grayish brown	10YF	₹4/2, dark	0	SP							- Screen 15.0 - 25.0 ft bgs 0.010 in. Prepack machine slot Sch 40 PVC
24-			Total Depth of Boring 25.0	feet		0								—End Cap

				erostar SES	Suc	BORING LO Start Date End Date	: 04		(Pa 2017	ge 1 ,		1)	Site Name Drilling Company Drilling Method Driller Borehole Diamet	: Geoprobe SP16 : Chris Aldrich er : 2.25 in.
			AF Pro	reas (Savannah District) FF Site Inspection bject# M2032.0001 Air National Guard Base		Northing Easting Surface Elev. (ft)* Total Depth (ft)**	: 7: : 14	2045 4702 14.9	7.07				Boring Completic Abandonment Da DTW During Drill Logged By	Chips ate : 04/20/17
	DEPTH IN FEET (BGS)	INTERVAL	% RECOVERY	Water Levels Turing Drilling DESCR	*Nor Datu **Be (BG	asurements th American Vertical Im (NAVD88) feet (ft) low Ground Surface S) feet (ft)	PID (ppm)	USCS	Munsell Soil Color	Depth to Water (DTW)	SAMPLE TYPE		SAMPLE ID	REMARKS
	0			(0.0 - 2.0) SILTY SAND, 10 grayish brown, moist, no o		/2, very dark	0	SM			SS		TN04-001-SS-001 Note: Interval 0.0 - 0.5 ft	No temporary well installed.
Da	2	1	100	(2.0 - 8.5) SAND, well grac brown, fine to medium grai	led, 1 ned, 1	0YR 4/3, noist, no odor								
	4						0	sw						
	6- - - 7-	0	0											
	8 - - - - -	2	88	(8.5 - 15.0) SILTY SAND, ⁷ gray, moist above 10 ft the no odor	10YR n wet	3/2, very dark below 10 ft,	-				so		TN04-001-SO-009 Note: Interval 8.0 - 9.0 ft	
יישיווימיו	10- 						0			•	-	-		
	12- 	3	100					SM			GW	BRL	N04-001-GW-013	Geoprobe SP16
	- - 14 - -												Note: Interval 11.0 - 15.0 ft	Screen Interval (11.0 - 15.0 ft)
	15—			Total Depth of Boring 15.0	feet		0	I]		

	-	AFF	F Ar AF Prc	erostar SES reas (Savannah District) FF Site Inspection oject# M2032.0001	Suc	BORING LC Start Date End Date Northing Easting Surface Elev. (ft)* Total Depth (ft)**	: 04 : 04 : 72 : 14	4/20/ 4/20/ 2059 4702 15.9	(Paថ្ 2017 2017	ge 1		I) C B B A C	ite Name orilling Company orilling Method oriller corehole Diamet coring Completic chandonment Da DTW During Drill ogged By	: Geoprobe SP16 : Chris Aldrich er : 2.25 in. n : Abandoned Bentonite Chips ate : 04/20/17
DEPTH IN FEFT		INTERVAL	% RECOVERY	Water Levels During Drilling DESCR	*Nor Datu **Be (BG	asurements th American Vertical im (NAVD88) feet (ft) low Ground Surface S) feet (ft)	PID (ppm)	NSCS	Munsell Soil Color	Depth to Water (DTW)	SAMPLE TYPE		MPLE ID	REMARKS
	0 1 2 3 4	1	100	(0.0 - 2.0) SILTY SAND, 10 grayish brown, moist, no od (2.0 - 10.0) SAND, poorly g brown, moist, no odor	dor		0	SM			SS	Not	4-002-SS-001 e: Interval 0 - 0.5 ft	No temporary well installed.
apriles Dataroutiningtoninon-Livot-voc.vo	5 6 7 8 9	2	84				0	SP						
1 vices (Savanian Uisy) bunning_bunning_bunning_	0 1 2 3 4 5	3	82	10.0 - 20.0) SILTY SAND, brown Wet, 11.0 ft bgs	very o	dark grayish	0	SM			SO	Not	4-002-SO-010 e: Interval 0 - 10.0 ft	
	6 7 8 9	4	100								GW	Not	4-002-GW-018 e: Interval 0 - 20.0 ft	Geoprobe SP16 Screen Interval (16.0 - 20.0 ft)
	20 —			Total Depth of Boring 20.0	feet									

	-	\FF	F Ar AF Pro	eas (Savannah District) FF Site Inspection bject# M2032.0001	LLC	BORING LC Start Date End Date Northing Easting Surface Elev. (ft)* Total Depth (ft)**	: 04 : 04 : 72 : 14	4/20/ 4/20/ 2047 4703 18.1	(Pag 2017 2017 1.62	ge 1		1)	Site Name Drilling Company Drilling Method Driller Borehole Diamete Boring Completio Abandonment Da DTW During Drill Logged By	: Geoprobe SP16 : Chris Aldrich er : 2.25 in. n : Abandoned Bentonite Chips ate : 04/20/17
DEPTH IN FEFT	(BGS)	INTERVAL	% RECOVERY	Water Levels During Drilling DESCRI	*Nor Datu **Be (BGS	Isurements th American Vertical m (NAVD88) feet (ft) low Ground Surface S) feet (ft)	PID (ppm)	USCS	Munsell Soil Color	Depth to Water (DTW)	SAMPLE TYPE		SAMPLE ID	REMARKS
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 3	70	(0.0 - 2.0) SILTY SAND, 10 grayish brown, moist, no od (2.0 - 10.0) SAND, well grac grayish brown, ~ 5% sub ar moist no odor 10.0 - 20.0) SILTY SAND, 1 grayish brown, ~ 10% silt Wet, 12.0 ft bgs	lor ded, f	10YR 5/2, r fine gravel,	- 0	SM			SS	BRL	TN04-003-SS-001 Note: Interval 0.0 - 0.5 ft TN04-003-SO-011 Note: Interval 10.0 - 11.0 ft TN04-003-GW-018 Note: Interval 16.0 - 20.0 ft	Geoprobe SP16 Screen Interval (16.0 - 20.0 ft)
2	20 -			Total Depth of Boring 20.0 f	feet									

		A	erostar SES	5	BORING LC Start Date			LTN((Pag 2017	ge 1) Site Name Drilling Company Drilling Method Driller Borehole Diamet	: Geoprobe SP16 : Chris Aldrich
		AF Prc	reas (Savannah District) FF Site Inspection oject# M2032.0001 Air National Guard Base		End Date Northing Easting Surface Elev. (ft) Total Depth (ft)	: 7: : 14	2037 4704 17.3	2017 6.62 80.79			Boring Completion Abandonment D DTW During Dril Logged By	Chips ate : 04/20/17
DEPTH IN FEET (BGS)	INTERVAL	% RECOVERY	Water Levels During Drilling DESCR	*Nor Datu **Be (BG	asurements th American Vertical um (NAVD88) feet (ft) elow Ground Surface S) feet (ft) ON	PID (ppm)	USCS	Munsell Soil Color	Depth to Water (DTW)	SAMPLE TYPE	SAMPLE ID	REMARKS
0 - 1 - 2 - 3 - 4 - 5 -	1	100	(0.0 - 2.0) SILTY SAND, 10 grayish brown, moist, no od (2.0 - 10.5) SAND, well gra dark brown, medium to coa no odor	dor ided,	10YR 3/3,	0	SM			SS	BRLTN04-004-SS-001 Note: Interval 0.0 - 0.5 ft	No temporary well installed.
Well Geographics Data\Burlington\BRLTN04	2	70				0	sw					
10-18-2017 R.:Projects/M2032.0001 Site Insp of AFFF Areas (Savannah Dist)Boring_Log_Well Geographics Data/BurlingtonBRLTN04-004.bo 10-18-11 01 05 04 00 10-11 05 00 10-11 05 0000000000000000000000000000000	3	72	(10.5 - 20.0) SILTY SAND, grayish brown, fine grained Wet, 14.0 ft bgs	10YI I sand	R 4/2, dark	0	SM		•	so	BRLTN04-004-SO-013 Note: Interval 12.0 - 13.0 ft	
10-18-2017 R:Projects/M2032.0001 Site In 	4	100	Total Depth of Boring 20.0	feet						GW	BRLTN04-004-GW-018 BRLTN04-004-GW-918 Note: Interval 16.0 - 20.0 ft	Geoprobe SP16 Screen Interval (16.0 - 20.0 ft)

AFFF Areas AFFF S Project	Costar SES (Savannah District) Site Inspection # M2032.0001 National Guard Base	uc	BORING LC Start Date End Date Northing Easting Surface Elev. (ft) Total Depth (ft)	: 04 : 04 : 72 : 14	4/19/ 4/19/ 2154 4674 06.3	(Pag 2017 2017	je 1) Site Name Drilling Company Drilling Method Driller Borehole Diamet Boring Completic Abandonment Da DTW During Drill Logged By	: Geoprobe SP16 : Chris Aldrich er : 2.25 in. on : Abandoned Bentonite Chips ate : 04/19/17
	Vater Levels During Drilling DESCRI	*Nor Datu **Be (BG	asurements th American Vertical Im (NAVD88) feet (ft) How Ground Surface S) feet (ft)	PID (ppm)	USCS	Munsell Soil Color	Depth to Water (DTW)	SAMPLE TYPE	SAMPLE ID	REMARKS
0	0 - 6.5) SAND, poorly gra bwn, fine grained, moist 5 - 6.7) SILTY CLAY, 10 ⁵ y plasticity, soft, moist, no 7 - 10.0) SAND, well grac bwn, fine to medium grain 0.0 - 19.0) SAND, poorly (bwn, uniform color, no od bwn, uniform color, no od	YR 4 2 odc ded, 1 ned, 1	/1, dark gray, or 10YR 5/3, moist	0	SP TCL SW			SS SO	BRLTN05-001-SS-001 BRLTN05-001-SS-901 Note: Interval 0.0 - 0.5 ft BRLTN05-001-SO-014 Note: Intervall 13.0 - 14.0 ft	No temporary well installed.
8-5014 K:/hbioledge/2003	tal Depth of Boring 19 fee	et						GW	BRLTN05-001-GW-017 Note: Interval 15.0 - 19.0 ft	Geoprobe SP16 Screen Interval (15.0 - 19.0 ft)

			erostar SES	LLC	BORING LO Start Date End Date	: 04	4/19/ 4/19/	(Paថ្ 2017 2017	ge 1		1)	Site Name Drilling Company Drilling Method Driller Borehole Diamet Boring Completic	: Geoprobe SP16 : Chris Aldrich er : 2.25 in. n : Abandoned Bentonite
В	urlin	Pro	FF Site Inspection ject# M2032.0001 Air National Guard Base		Northing Easting Surface Elev. (ft)* Total Depth (ft)**	: 14	2195 4678 02.9 5.0		6			Abandonment Da DTW During Drill Logged By	
DEPTH IN FEET (BGS)	INTERVAL	% RECOVERY	Water Levels During Drilling DESCRI	*Nort Datur **Bel (BGS	surements th American Vertical m (NAVD88) feet (ft) ow Ground Surface s) feet (ft)	PID (ppm)	USCS	Munsell Soil Color	Depth to Water (DTW)	SAMPLE TYPE		SAMPLE ID	REMARKS
0	1	100	(0.0 - 5.0) SILTY SAND, 7.5 brown, silt fine grained sand	d, mo	bist, no odor	0	SM			SS	BRL	TN05-002-SS-001 Note: Interval 0.0 - 0.5 ft	No temporary well installed.
6 7 8 9	2	86	(5.0 - 10.0) SAND, poorly g dark grayish brown, fine gra	ained		- 0	SP						
11 12 13 14 15		80	(10.0 - 34.0) SILT, 10YR 5/. moist	2, gra	iyish brown,	0							
16 17 18 19 20	4	80				0							
21 22 23 24	5	100				0	ML						
25 26 27 28 29	6	100	Wet 29 ft bgs			0			•	so	BRL	TN05-002-SO-028 TN05-002-SO-928 Note: Interval 27.0 - 28.0 ft	
30 31 32 33	7	100	J			0				GW	BRLT	™05-002-GW-033	Geoprobe SP16
34 35 36	8	100	(34.0 - 36.0) SAND, poorly brown, fine grained, wet, no	grade o odor	ed, 10YR 5/3,	0	SP				BRL1	N05-002-GW-933 Note: Interval 32.0 - 33.0 ft	Screen Interval (30.0 - 34.0 ft)
30-			Total Depth of Boring 36.0 f	feet									

	AFF	F Ar AF Pro	erostar SES reas (Savannah District) FF Site Inspection oject# M2032.0001	5	BORING LC Start Date End Date Northing Easting Surface Elev. (ft)* Total Depth (ft)**	: 04 : 04 : 72 : 14	4/19/ 4/19/ 2188 4678 05.9	(Paថ្ 2017 2017	ge 1		1)	Site Name Drilling Company Drilling Method Driller Borehole Diamete Boring Completion Abandonment Da DTW During Drill Logged By	: Geoprobe SP16 : Chris Aldrich er : 2.25 in. n : Abandoned Bentonite Chips
DEPTH IN FEET	INTERVAL	% RECOVERY	Water Levels Turing Drilling DESCR	*Nor Datu **Be (BG	asurements th American Vertical Im (NAVD88) feet (ft) low Ground Surface S) feet (ft)	PID (ppm)	USCS	Munsell Soil Color	Depth to Water (DTW)	SAMPLE TYPE		SAMPLE ID	REMARKS
	1	100	(0.0 - 5.0) SILTY SAND, 7. brown, silt and fine grained odor	l sanc	I, moist, no	0	SM			SS		TN05-003-SS-001 Note: Interval 0.0 - 0.5 ft	No temporary well installed.
6· 7·		100	(5.0 - 10.0) SAND, poorly g fine grained, moist, no odo	r		0	SP						
11 ⁻ 12 ⁻ 13 ⁻ 14 ⁻ 15 ⁻	3	125	(10.0 - 32.5) SILT, 10YR5/ moist, no odor	2, gra	yısh brown,	0							
16 ⁻ 17 ⁻ 18 ⁻ 18 ⁻ 19 ⁻ 20 ⁻		125				0							No groundwater encountered
8 8 9 10 11 12 12 13 13 14 15 16 16 17 20 23 24 24 25 26 30 31 31 32 33 33	6	100				0	ML						during drilling.
26 · 27 · 28 · 29 · 29 · 30 ·	7	100											
31 · 32 · 33 · 33 ·		100	Total Depth of Boring 32.5	feet		0				SO		TN05-003-SO-032 Note: Interval 31.0 - 32.0 ft	

Appendix D Laboratory Case Narratives Data Validation Report and Analytical Data Sheets

Maxxam

Prepared for: Aerostar SES LLC

Project: M2032.0001 (SAVANNAH) BURLINGTON

Analytical Data Package (Level IV)

Analysis: PFOS and PFOA in water and soil (Method 537 mod.)

Maxxam Job #: B780315

Maxam

Certification Page

- 1. Project Narrative
- 2. Sample Management Records
 - 2.1 Sample Custody
- 3. Analytical Results
 - 3.1 Summary Report
 - 3.2 Sample Chromatograms
- 4. QA/QC Data
- 5. Initial Calibration
- 6. Continuing Calibration

Last Page

Maxxam

I hereby certify that to the best of my knowledge all analytical data presented in this report:

- Has been checked for completeness.
- ➢ Is accurate, legible and error free.
- Has been conducted in accordance with approved SOP's and that all deviations are clearly listed in the Case Narrative.
- > This report has been generated in .pdf format.

Review Performed By:

Glossary of Terms

- Detection Limit (DL) this can also be called Method Detection Limit (MDL): The lowest concentration or amount of the target analyte that can be identified, measured, and reported with confidence that the analyte concentration is not a false positive value. (Clarification): The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence. At the DL, the false positive rate (Type I error) is 1%.
- Limit of Detection (LOD): An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte- and matrixspecific and may be laboratory-dependent. (Clarification): The smallest amount or concentration of a substance that must be present in a sample in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate (Type II error) is 1%.
- Limits of Quantitation (LOQ) this can also be called Reporting Detection Limit (RDL): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. (Clarification): The lowest concentration that produces a quantitative result within specified limits of precision and bias. For DoD projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard.
- Acceptance Criteria are values used by the laboratory to determine that a process is in control.
- Accuracy is the degree of agreement of a measured value with the true or expected value.
- Calibration Standards are a set of solutions containing the analytes of interest at a specified concentration.
- Calibration Verification Standard consists of a calibration standard solution of intermediate concentration (mid-point initial calibration level) used to access whether the initial calibration is still valid
- > **Certified Reference Material** is a stable homogenous material that is certified by repetitive analysis from a supplier who is certified to generate said materials.

- Internal Standard a deuterated or ¹³C-labelled analyte that is added to a sample extract prior to instrumental analysis to compensate for injection variability.
- Isomer is a member of a group of compounds that differ from each other only in the locations of a specific number of common substituent atoms or groups of atoms on the parent compound.
- Method Blank is a laboratory control sample using reagents that are known to be free of contamination.
- Precision is the degree of agreement between the data generated from repetitive measurements under specific conditions.
- Quality Assurance is a system of activities whose purpose is to provide the producer or user of a product with the assurance that the product meets a defined standard of quality.
- > **Quality Control** is the overall system of activities whose purpose is to control the quality of a product so that it meets the needs of the end user.
- > *RSD* is the relative standard deviation.
- Blank Spike is a laboratory control sample that has been fortified with native analytes of interest.
- Window Defining Mixture is a solution containing only the earliest and latest eluting congeners within each homologous group of target analytes on a specified GC column.
- *RPD* or Relative Percent Difference. A measure used to compare duplicate sample analysis.
- EMPC/NDR Peak detected does not meet ratio criteria and has resulted in a higher detection limit.

1.0 Project Narrative

Maxxam Job: B780315 – Soil Analysis

Sample Analysis

Soil samples were initially pre-screened and estimated concentrations were obtained so that samples could be appropriately diluted for quantitative analysis on QC batches 4966650 (2017/05/09), 4966664 (2017/05/09) and 4966672 (2017/05/09). Due to high concentrations, 10x dilutions were required for Perfluorooctanesulfonate (PFOS) in the following samples:

EGG575	BRLTN01-003-SD-001
EGG576	BRLTN01-003-SD-901
EGG579	BRLTN03-003-SD-001
EGG589	BRLTN03-002-SS-001
EGG590	BRLTN03-002-SO-015
EGG592	BRLTN03-001-SS-001
EGG593	BRLTN03-001-SO-014
EGG596	BRLTN02-001-SO-020
EGG599	BRLTN02-002-SO-020

Detection limits were adjusted accordingly for this analyte.

High concentrations of target analytes were detected in several samples during pre-screening. These samples were diluted prior to analysis, with additional dilutions for the following selected analytes:

EGG602BRLTN01-002-SO-007Perfluorooctanesulfonate (PFOS), Perfluorooctane sulfonamide (PFOSA)EGG603BRLTN01-002-SO-907Perfluorooctanesulfonate (PFOS), Perfluorooctane sulfonamide (PFOSA)

Detection limits were adjusted accordingly for these samples.

The following sample was analyzed on QC batch 4966664 (2017/05/09) immediately after the Matrix Spike/Matrix Spike Duplicate (MS/MSD) which contained high concentrations of Perfluorooctanesulfonate (PFOS):

EGG594 BRLTN02-001-SS-001

Because an Instrument Blank (IB) was not injected prior to this sample to eliminate the possibility of potential carryover from the MS/MSD, the sample was re-extracted and re-analyzed on QC batch 4994232 (2017/05/27) for Perfluorooctanesulfonate (PFOS), past the method defined hold time. Because of their chemical structures, per- and polyfluorinated alkyl substances (PFAS) are chemically and biologically stable in the environment and resist typical environmental degradation processes. This would suggest the hold time exceedance would not have a significant impact on the data quality.

Data was evaluated in accordance with acceptance criteria specified in DoD QSM 5.1.

QC Samples

Matrix Spike and Matrix Spike Duplicate (MS/MSD) was performed on sample EGG602 (*BRLTN01-002-SO-007*) on QC batch 4966672 (2017/05/09). Due to high concentrations of target analytes in the native sample, the undiluted native sample was not analyzed, and MS/MSD recoveries could not be calculated.

Extracted Internal Standard Analytes

Isotopically labeled ¹³C₂-Perfluoroundecanoic acid (MPFUnA) and ¹³C₈-Perfluorooctane sulfonamide (MPFOSA) are used as internal standards to quantify native Perfluoroundecanoic acid (PFUnA) and Perfluorooctane sulfonamide (PFOSA) respectively. The recoveries observed for selected extracted internal standard analytes were below the defined lower control limit (LCL) for the following samples:

EGG610 BRLTN05-002-SS-001 (MPFUnA)

EGG611 BRLTN05-002-SO-028 (MPFOSA) EGG612 BRLTN05-002-SO-928 (MPFOSA)

When quantifying analytes using isotope dilution techniques, the extracted internal standard analytes differ from the native compounds only in the presence of the stable isotopes. The physical and chemical behavior of each extracted internal standard analyte is virtually identical to its unlabeled or "native" analog. Any loss (or apparent gain) of the native compound that may occur during any of the sample preparation, extraction, cleanup or determinative steps will be mirrored by a similar loss (or apparent gain) of the extracted internal standard analyte, and as such can be accounted for and corrected. Therefore, the quantification of these target compounds is not affected by the low (or high) recoveries, provided the instrument response for the native and labeled compounds is distinguishable from the instrument or background noise.

Quantitation of PFAS

Many PFAS (e.g. PFOS) have several isomeric forms that may show up as separate or partially-merged peaks in the analytical chromatograms. These peaks will be integrated and the areas summed such that the result represents the concentration of the sum of the linear and branched isomers, per USEPA (2009). Instrumentation is calibrated using certified quantitative standards containing only the linear isomer for all target analytes, except Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS), which are calibrated using certified branched and linear isomer mixtures. As additional certified reference materials containing branched and linear isomers become commercially available, they will be incorporated into the analytical method.

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

Maxxam Job: B780315 - Water Analysis

Sample Analysis

Water samples were initially pre-screened and estimated concentrations were obtained so that samples could be appropriately diluted for quantitative analysis on QC batches 4963000 (2017/05/05) and 4963931 (2017/05/03). The following sample required 20x dilutions for selected analytes:

EGG583 BRLTN01-MW102-011 Perfluorobutanesulfonate (PFBS), Perfluorohexanoic acid (PFHxA), Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS)

Detection limits were adjusted accordingly for these analytes.

High concentrations of target analytes were detected in several samples during pre-screening. These samples were diluted prior to analysis, with the following selected analytes requiring further dilutions:

EGG577	BRLTN01-003-SW-001	Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS)							
EGG578	BRLTN01-003-SW-901	Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS)							
EGG580	BRLTN03-003-SW-001	Perfluorooctanesulfonate (PFOS)							
EGG583	BRLTN01-MW102-011	Perfluorobutanesulfonate (PFBS), Perfluorohexanoic acid (PFHxA), Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS)							
EGG584	BRLTN01-MW103-009	Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS)							
EGG585	BRLTN01-MW103-909	Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS)							
EGG586	BRLTN01-002-GW-015	Perfluorohexanesulfonate (PFHxS)							
EGG587	BRLTN01-TRENCHSUMP-001	Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS)							
EGG588	BRLTN01-VIMW14L-008	Perfluorohexanesulfonate (PFHxS)							
EGG615	BRLTN03-002-GW-022	Perfluorooctanesulfonate (PFOS)							
EGG616	BRLTN03-001-GW-022	Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS)							
EGG617	BRLTN02-001-GW-027	Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS), 6:2 Fluorotelomersulfonate (6:2FTS)							
EGG618	BRLTN01-001-GW-013	Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS), 6:2 Fluorotelomersulfonate (6:2FTS)							

Detection limits were adjusted accordingly for these samples.

The following sample was initially analyzed on QC batch 4963000 (2017/05/05):

EGG577 BRLTN01-003-SW-001

Due to failure of QC acceptance criteria on this batch, this sample was re-extracted and re-analyzed on QC batch 4974570 (2017/05/09) past the method defined hold time.

All other water samples were initially analyzed on QC batch 4963931 (2017/05/03). The concentration of 6:2 Fluorotelomersulfonate (6:2FTS) in the Blank (Method Blank) was above the defined upper control limit in this batch. As a result, samples were re-extracted and re-analyzed for this analyte on QC batch 4978406 (2017/05/11) past the method defined hold time, with the exception of the following sample:

EGG607 BRLTN05-001-GW-017

This sample could not be re-extracted due to limited sample volume, and the result for 6:2 Fluorotelomersulfonate (6:2FTS) was reported from QC batch 4963931 (2017/05/03) and should be used with discretion.

Because of their chemical structures, per- and polyfluorinated alkyl substances (PFAS) are chemically and biologically stable in the environment and resist typical environmental degradation processes. This would suggest the hold time exceedance would not have a significant impact on the data quality.

Data was evaluated in accordance with acceptance criteria specified in DoD QSM 5.1.

QC Samples

Matrix Spike and Matrix Spike Duplicate (MS/MSD) was required on the following samples:

EGG577 BRLTN01-003-SW-001 EGG584 BRLTN01-MW103-009

Due to high concentrations of target analytes in the native samples, Matrix Duplicates (MDs) were prepared instead for these samples, in addition to Spike Duplicates (LCS Duplicates).

Extracted Internal Standard Analytes

Isotopically labeled ¹³C₂-Perfluorododecanoic acid (MPFDoA) is used as an internal standard to quantify native Perfluorododecanoic acid (PFDoA). The recovery observed for this extracted internal standard analyte was below the defined lower control limit (LCL) for the following sample:

EGG607 BRLTN05-001-GW-017

When quantifying analytes using isotope dilution techniques, the extracted internal standard analytes differ from the native compounds only in the presence of the stable isotopes. The physical and chemical behavior of each extracted internal standard analyte is virtually identical to its unlabeled or "native" analog. Any loss (or apparent gain) of the native compound that may occur during any of the sample preparation, extraction, cleanup or determinative steps will be mirrored by a similar loss (or apparent gain) of the extracted internal standard analyte, and as such can be accounted for and corrected. Therefore, the quantification of these target compounds is not affected by the low (or high) recoveries, provided the instrument response for the native and labeled compounds is distinguishable from the instrument or background noise.

Quantitation of PFAS

Many PFAS (e.g. PFOS) have several isomeric forms that may show up as separate or partially-merged peaks in the analytical chromatograms. These peaks will be integrated and the areas summed such that the result represents the concentration of the sum of the linear and branched isomers, per USEPA (2009). Instrumentation is calibrated using certified quantitative standards containing only the linear isomer for all target analytes, except Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS), which are calibrated using certified branched and linear isomer mixtures. As additional certified reference materials containing branched and linear isomers become commercially available, they will be incorporated into the analytical method.

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

Maxxam Analytics Client Project #: M2032.0001 (SAVANNAH)

Client: Aerostar SES LLC Client Project: M2032.0001 (SAVANNAH)

I. SAMPLE RECEIPT/ANALYSIS

a) Sample Listing

Maxxam	Client	Date	Date	Date	Date	Initial
ID	Sample ID	Sampled	Received	Prepped	Run	Calibration
	OA in soil by SPE/LCMS					
EGG575	BRLTN01-003-SD-001	2017/04/18	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG576	BRLTN01-003-SD-901	2017/04/18	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG579	BRLTN03-003-SD-001	2017/04/18	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG581	BRLTN02-004-SD-001	2017/04/18	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG589	BRLTN03-002-SS-001	2017/04/18	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG590	BRLTN03-002-SO-015	2017/04/18	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG592	BRLTN03-001-SS-001	2017/04/18	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG593	BRLTN03-001-SO-014	2017/04/18	2017/04/21	2017/05/03	2017/05/09	2017/05/09 & 2017/05/27
EGG594	BRLTN02-001-SS-001	2017/04/18	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG595	BRLTN02-001-SS-901	2017/04/18	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG596	BRLTN02-001-SO-020	2017/04/18	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG597	BRLTN02-002-SS-001	2017/04/18	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG598	BRLTN02-003-SS-001	2017/04/18	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG599	BRLTN02-002-SO-020	2017/04/18	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG600	BRLTN02-003-SO-025	2017/04/18	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG602	BRLTN01-002-SO-007	2017/04/19	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG603	BRLTN01-002-SO-907	2017/04/19	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG604	BRLTN05-001-SS-001	2017/04/19	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG605	BRLTN05-001-SS-901	2017/04/19	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG606	BRLTN05-001-SO-014	2017/04/19	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG608	BRLTN05-003-SS-001	2017/04/19	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG609	BRLTN05-003-SO-032	2017/04/19	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG610	BRLTN05-002-SS-001	2017/04/19	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG611	BRLTN05-002-SO-028	2017/04/19	2017/04/21	2017/05/03	2017/05/09	2017/05/09
EGG612	BRLTN05-002-SO-928	2017/04/19	2017/04/21	2017/05/03	2017/05/09	2017/05/09
	A in water by SPE/LCMS					
EGG574	BRLTN-RS-001	2017/04/18	2017/04/21	2017/05/11	2017/05/11	2017/05/03 & 2017/05/11
EGG577	BRLTN01-003-SW-001	2017/04/18	2017/04/21	2017/05/09	2017/05/12	2017/05/09
EGG577 Dup	BRLTN01-003-SW-001	2017/04/18	2017/04/21	2017/05/09	2017/05/12	2017/05/09
EGG578	BRLTN01-003-SW-901	2017/04/18	2017/04/21	2017/05/11		2017/05/03 & 2017/05/11
EGG580	BRLTN03-003-SW-001	2017/04/18	2017/04/21	2017/05/11	2017/05/11	
EGG582	BRLTN02-004-SW-001	2017/04/18	2017/04/21	2017/05/11		2017/05/03 & 2017/05/11
EGG583	BRLTN01-MW102-011	2017/04/18	2017/04/21	2017/05/11		2017/05/03 & 2017/05/11
EGG584	BRLTN01-MW103-009	2017/04/18	2017/04/21	2017/05/11		2017/05/03 & 2017/05/11
EGG584 Dup	BRLTN01-MW103-009	2017/04/18	2017/04/21	2017/05/02	2017/05/03	2017/05/03
EGG585	BRLTN01-MW103-909	2017/04/18	2017/04/21	2017/05/11		2017/05/03 & 2017/05/11
EGG586	BRLTN01-002-GW-015	2017/04/19	2017/04/21	2017/05/11		2017/05/03 & 2017/05/11
EGG587	BRLTN01-TRENCHSUMP-001	2017/04/19	2017/04/21	2017/05/11		2017/05/03 & 2017/05/11
EGG588	BRLTN01-V1MW14L-008	2017/04/19	2017/04/21	2017/05/11		2017/05/03 & 2017/05/11
EGG591	BRLTN-SB-001	2017/04/18	2017/04/21	2017/05/11		2017/05/03 & 2017/05/11
EGG601	BRLTN-RS-002	2017/04/19	2017/04/21	2017/05/11		2017/05/03 & 2017/05/11
EGG607	BRLTN05-001-GW-017	2017/04/19	2017/04/21	2017/05/02	2017/05/03	2017/05/03
EGG613	BRLTN05-002-GW-033	2017/04/19	2017/04/21	2017/05/11		2017/05/03 & 2017/05/11
EGG614	BRLTN05-002-GW-933	2017/04/19	2017/04/21	2017/05/11		2017/05/03 & 2017/05/11
EGG615	BRLTN03-002-GW-022	2017/04/19	2017/04/21	2017/05/11		2017/05/03 & 2017/05/11
EGG616	BRLTN03-001-GW-022	2017/04/20	2017/04/21	2017/05/11		2017/05/03 & 2017/05/11
EGG610 EGG617	BRLTN02-001-GW-022 BRLTN02-001-GW-027	2017/04/20	2017/04/21	2017/05/11		2017/05/03 & 2017/05/11
EGG618	BRLTN02-001-GW-027 BRLTN01-001-GW-013	2017/04/20	2017/04/21	2017/05/11		2017/05/03 & 2017/05/11
199010	DUFLINOT-001-001-012	2017/04/20	2017/04/21	2017/05/11	2017/05/11	2017/03/03 & 2017/03/11

Run Date is defined as the date of injection of the last calibration standard (12 hours or less) prior to the samples analyzed within that run sequence. Therefore the time of calibration injection that defines the run date is always within 12 hours of the time of sample injection.

b) Shipping Problems: none encountered

c) Documentation Problems: Samples "BRLTN05-002-GW-033" and "BRLTN05-002-GW-933" were listed as soils on the CoC. Proceeded with water analysis as the samples are liquid and the sample ID indicated GW.

II. SAMPLE PREP:

No problems encountered

III. SAMPLE ANALYSIS:

See also comments within the appropriate Certificate of Analysis

a) Hold Times: Due to rework requirements, the following samples were extracted for past the recommended hold time of 14 days: Samples EGG574, EGG578, EGG580, EGG582, EGG583, EGG584, EGG585, EGG586, EGG587, EGG588, EGG591, EGG601, EGG613, EGG614, EGG615, EGG616, EGG617, and EGG618 for 6:2 FTS, sample EGG594 for PFOS, and sample EGG577 for all analytes.

b) Instrument Calibration: all within control limits

c) Quality Control: All applicable QC meets control criteria, except where otherwise noted.

d) All analytes requiring manual intergration(s) are noted on the sample chromatograms

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for other than the conditions detailed above.

In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. Release of the data contained in this data package has been authorized by the cognizant laboratory official or his/her designee, as verified by this signature.

Steph Fallen Project Manager- Site Assessment and Remediation/ Ultra Trace

2017/06/23

Date

2.1 Sample Custody

Project Name: Site Inspections of Fire Fighting Foam Usage at Various Air Force Bases in the Eastern United States							lissa	-Apr-17 14:1 DiGrazia				
Aerostar Project Manager: Send Data to:		478) 397-4906 865) 483-7904			0		B75	80315	0	iple Types: = Normal		
Sampler(s):	Reunsbruch Rum D	2.2					-	ENV-767		= Field Duplicate = Ambient Blank or Field Reagent Blank [EB = Equipment Rinsate		
Laboratory Name/Address: Maxam Analytics, Inc 6740 Campobello Rd. Misalasauga, Ontario LSN2L8 Restored to FedEx Depot Depot LSN2L8 Restored to FedEx Depot 299 Cayuga Rd. Cheektowaga, NY 14221 Please indicate "HOLD FOR Pl			Contact: Melissa DiGrazia Phone: (905) 817-5700, ext. 5784 email: MDIGrazia@maxxam.ca		t of 15 analytes bolow)				SE = Sediment WS = Surface Water	and the second second		
MAXXAM use only	Sample (D	Date Collected	Time Collected	Sample Type	Matrix	PFAS (see it				WQ = Field QC (AB, EB)		
	BRLTN-RS-001	4/18/177	1250	EB	Wa	1				(Spour) assec. w/ Sumple beau		
	BRLTNO1-003-50-001	4/18/17*	130	N	SE	2			-	Parent + ms/msid		
	BRITNU1-003-58-01	4/15/17	1310	FD	SE	1				Tayout of the production of the		
	BRLTNOIL-003-5W-001	4/18/17	1310	N	WS	2				MS/MSD + PaienL		
		4/18/17	1310	FD	VS	1				1 1 1 1 1		
	BRHTN03-003-50-001 .		1356	N	SE	1						
	BR17103-003-510-001	4/18/7	13.56	N	WS	1						
	BRLT1/02-004-5D-001	4/15/17	ASYER	N	SE.	1						
	and ALL LINE IN A	4/18/17	152000	N	ws	1						
	BRLTNOI-MW102-011	4/18/17	1645	N	WG	l						
	BRL-FN01-MW103-009	4/18/17	1752	N	WG	2				pusent /(ms/msD)		
	BRLTNOF-MW103-900	4/15/17	1752	FD	WG							
		4/19/17	0850	N	WG	2				2 borther 2 grab Sarapa		
	BPLTNDI-TRENCHSUMP-00	4/19/17	1130	N	WG	2				2 bottles, grab Sample		
	BRITNOI-VIMWI4L-016	4/19/17	1321	N	W6	11				9		
	M/20119 61800	RECEIVED BY:		Total #	13/4/21 14:11	20	salyte st	ANALYTE Politicarian di se col	Parts Parts Woo	Internet Problem Statement and Trents - December - D		
Karks Brumber	ASL ASL	PARAMSEE	SiNAY	1.5/1	17/19 2	1/2.0/1	9	Nethalityman, and Nethalityman, and	1936	101444 Vederssinguna M. WOM States		
Signature	Se DawTene	Sentine	4	Jata/Terre				Professionary and Profession and	PERMIT	15-01.6 2.2.2.000 contrast sectors and an array of the sector of the sec		
Printed Marray	Fans.	Printed Name		Fijen.	-	-		Performance and Performance and	210/ 11/10/ 17/43	million & Helling and Managine (1943) 19430-4		

Aerosta	rses.	1006 Floyd Cul Oak Ridge, 11 865-481-7	37830		n of Cus sis Requ						409 Page 2 of 3		
Project Name: Site Inspection Force Bases in the Eastern U	ns of Fire Fighting Foam Usage at Various Air Inited States		Job No.: M2					AN	ALYSIS				
		478) 397-4905 (865) 483-7904			0						Sample Types: N = Normal FD = Field Duplicate	1.4	
ampler(s): Frant	K Johnson										AB = Ambient Blank or Field Reagent Blank EB = Equipment Rinsate		
aboratory Name/Address: faxzam Analytics, inc (740 Campobelio Rd. dississauga, Ontario .5N2L6	Laboratory Shipping Addn Maxxam Analytics ofor PedEx Depot 299 Cayuga Rd. Cheektowaga, NY 1422 Please indicate "HOLD FOR P		Contact: Me Phone: (905 email: MDi) 817-5700, 4	ext. 5784	et of 18 analytes below)					Matrix: WG = Groundwater SO = Soil WP = Potable Water SE = Sediment WS = Surface Water WG = Field QC (AS, EB)		
MAXXAM use only	Sample ID	Date Collected	Time Collected	Sample Type	Matrix	PFAS (see)				10	WU = FIELD UC (AD, ED)		
ŧ	BRLTN/03-002-55-001	04/18/2017	0852	N	SO	1	-	-		-	NOTES		
	BRLTN03-002-50-015	and a start of the	0945	N	50	4	-	-	-	-			
	BRLTN-SB-001	04/18/2017	and the second se		WQ	1			-	-			
	BRETN03-001-55-001	04/18/2017	1037	N	SO	1							
	BRLTN 03-001-50-004	Section 19 19 19	112.0	N	50	1			-				
	BRLTN02-001-55-001	04/18/2017	1255	N	50	2	1				Normel+ MS/MSD		
	BRLTN02-001-55-901	04/18/2017	DSS	FD	50	1							
	BRETN 02-001-50-020	04/18/2017	1405	N	SD	1	1						
	BRI-TN 02-002-55-001	04/18/2017	1445	N	SD	1	1.0						
	BRLTN02-003-55-001	04/18/2017	1600	N	SO	L							
	BRLTN02-002-50-020	04/18/2017	1530	N	SD	1	-					4	
	BRETN02-003-50-025	04/13/2017	1705	N	SO	1							
	BRLTN-RS-002	04/10/2011	0730	EB	WQ	1	1				Spoon reasche gase, with & sample		
-	BRLTN 01-002-50-007	04/19/2017	0840	N	50	2	_		-		Normal + MS/MSD; Hich VOC		
	BRLTN01-002-50-907	04/14/2017	0840		S.D. Containers	1	-	-	-	-	High VOC		
	SHUTTONE 4/20/17 10/1500	RECEIVED BY: Ognimum Parigert	-	AR 17	7/0-1/21		Analyta List:	Tyrillainnatuu		Patroni Patroni October	104-111 Performentations and PUTCA Condition of the		
Kaleb Brun ban	finn A51	Protest Name PARAM5		Files 1822/4 1-1 Same Times	5/1.7/1.9	2.1/2	0/1.9		and a set	PT55A 202265 PE3D556 PE3D56 2026655			
Have Name:	Fam	Printed Marine		Gim				Parthamater or Performance of	er, and	WERA WEREA	101-191 Definition of the Providence of the State of the		

Project Name: Site Inspection Force Bases in the Eastern	ons of Fire Fighting Foam Usage at Various Air United States		Job No.: M					ANALYSIS			410 - of <u>3</u>	-	
erostar Project Manager: iend Data to:		(478) 397-4906 (865) 483-7904	-		0					Sample N = No		-	
ampler(s):	Laboratory Shipping Addr	mbual								AB = An	ubient Blank or Field Reagent Blank uipment Rinsate		
aboratory Name/Address: Aaxxam Analytics, Inc 740 Campobello Rd. Alississauga, Ontario 5N2L8	Laboratory Shipping Addr Maxxam Analytics c/o FedEx Depot 299 Cayuga Rd. Cheektowaga, NY 1422 Please Indicate "HOLD FOR P	5	Contact: Mi Phone: (90) email: MD	5) 817-5700,	ext. 5784	at of 18 analytes below)				SO = So WP = Po SE = So WS = So	table Water idiment uface Water	Ma	
MAXXAM use only	Sample ID	Date Collected	Time Collected	Sampte Type	Matrix	AS (see it				WQ = Fi	eld QC (AB, EB) -		
			Linc			<u>n</u>	-		-		NOTES		
F	BRETNO5-001-55-001	4/19/2017	1025	N	50	1	-	*	-				
	BRLTNOS-001-55-901	4/19/2017	1025	FD	50	+	-	-	-				
	BRITNOS-001-50-014	4/10/2017	1100	N	SU	1	-		-	-			
	BRLTN 05-001-6W-017	4/19/2017	1115	N	WG	1			-				
	BRLTNOS-003-55-001	4/19/2017	1145	N	50	1	-	-	-				
		4/19/2017	1417	N	SO	1	-	-	-				
	BRLTN05-002-55-001	04/10/2017	1500	N	90	1							
	BRLTN05-002-50-028	04/19/2017	1625	N	SO	1	_						
	BRLTN 05-002-50-928	04/10/2017	1 ver	FD	SO	1				-			
		04/19/2017	1655	N	SD	2				Norm	n+ MS/MSD		
	BRLTN 05-002-6W-933	04/19/2017	1655	FD	50	1							
*	BRLTN03-002-6W-02	on 120 port	1213	N	WG								
	BRLTN03-001-6-072	04/20/2017	1303	N	WG	1					the second s		
4	BRLTNOZ-001-64-027	04/20/2017	1435	N	NG .	1					and the second s		
	BREINO 1-001-GW-013	04/20/2017	1425	N	WG	1				-	1- 11-		
INQUISHED BY:	TestelTere	RECEIVED BY:		Total # c	of Containers	16 Anal	/te	NALVIL	EAPD.P	EAA	Costammat EARYON CAS		
1202/1	412-117 @ 1800	Parregent			14:11		Perth	New middlenit with	PER CON-	100-261	Profession almost and PTR24 - COMPARE		
Katch Brunbun	Fam: /	Presed Name BARAMO 681	510144	1.5/1.7/1	1.9 2.1/2	0/1.9	Freth	and and a set of the s	IVNA IVINA	100.40-4	Probaneous Charles and Proban Sciences		
nature 1	a DatsTime	Signature		Date/Time			Evella Defin	for exercise and	9934PA 197365-X	195325# AJC R.4	E : Plannet out self-mar E 225 String 2+3 Parkdot de senar cont 1994 C 1970.	4	
inted Name	Fire	Promod Name	- (Fre			Pette	A la serie de la constante de	PEDIA PEDIA PEDIA	105 m 1 2012 0 F	Performance and 2010 (05/07) Profession of an analysis (05/07) Profession of an analysis (05/07)		5

Maxxam

Prepared for: Aerostar SES LLC

Project: M2032.0001 (SAVANNAH) BURLINGTON

Analytical Data Package (Level IV)

Analysis: PFOS and PFOA in water and soil (Method 537 mod.)

Maxxam Job #: B780516

Maxam

Certification Page

- 1. Project Narrative
- 2. Sample Management Records
 - 2.1 Sample Custody
- 3. Analytical Results
 - 3.1 Summary Report
 - 3.2 Sample Chromatograms
- 4. QA/QC Data
- 5. Initial Calibration
- 6. Continuing Calibration

Last Page

Maxxam

I hereby certify that to the best of my knowledge all analytical data presented in this report:

- Has been checked for completeness.
- ➢ Is accurate, legible and error free.
- Has been conducted in accordance with approved SOP's and that all deviations are clearly listed in the Case Narrative.
- > This report has been generated in .pdf format.

Review Performed By:

Glossary of Terms

- Detection Limit (DL) this can also be called Method Detection Limit (MDL): The lowest concentration or amount of the target analyte that can be identified, measured, and reported with confidence that the analyte concentration is not a false positive value. (Clarification): The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence. At the DL, the false positive rate (Type I error) is 1%.
- Limit of Detection (LOD): An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte- and matrixspecific and may be laboratory-dependent. (Clarification): The smallest amount or concentration of a substance that must be present in a sample in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate (Type II error) is 1%.
- Limits of Quantitation (LOQ) this can also be called Reporting Detection Limit (RDL): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. (Clarification): The lowest concentration that produces a quantitative result within specified limits of precision and bias. For DoD projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard.
- Acceptance Criteria are values used by the laboratory to determine that a process is in control.
- Accuracy is the degree of agreement of a measured value with the true or expected value.
- Calibration Standards are a set of solutions containing the analytes of interest at a specified concentration.
- Calibration Verification Standard consists of a calibration standard solution of intermediate concentration (mid-point initial calibration level) used to access whether the initial calibration is still valid
- > **Certified Reference Material** is a stable homogenous material that is certified by repetitive analysis from a supplier who is certified to generate said materials.

- Internal Standard a deuterated or ¹³C-labelled analyte that is added to a sample extract prior to instrumental analysis to compensate for injection variability.
- Isomer is a member of a group of compounds that differ from each other only in the locations of a specific number of common substituent atoms or groups of atoms on the parent compound.
- Method Blank is a laboratory control sample using reagents that are known to be free of contamination.
- Precision is the degree of agreement between the data generated from repetitive measurements under specific conditions.
- Quality Assurance is a system of activities whose purpose is to provide the producer or user of a product with the assurance that the product meets a defined standard of quality.
- > **Quality Control** is the overall system of activities whose purpose is to control the quality of a product so that it meets the needs of the end user.
- > *RSD* is the relative standard deviation.
- Blank Spike is a laboratory control sample that has been fortified with native analytes of interest.
- Window Defining Mixture is a solution containing only the earliest and latest eluting congeners within each homologous group of target analytes on a specified GC column.
- **RPD** or Relative Percent Difference. A measure used to compare duplicate sample analysis.
- EMPC/NDR Peak detected does not meet ratio criteria and has resulted in a higher detection limit.

1.0 Project Narrative

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639 www.maxxamanalytics.com

Maxxam Job: B780516 – Soil Analysis

Sample Analysis

Soil samples were initially pre-screened and estimated concentrations were obtained so that samples could be appropriately diluted for quantitative analysis on QC batch 4972291 (2017/05/13). Due to high concentrations, dilutions were required for selected analytes in the following samples:

EGH831	BRLTN04-002-SO-010	Perfluorooctanesulfonate (PFOS)
EGH850	BRLTN-WS-001	Perfluorooctanesulfonate (PFOS), Perfluorooctane sulfonamide (PFOSA)

Detection limits were adjusted accordingly.

A typographical error was made when this QC batch was submitted for instrumental analysis. Sample EGH831 (*BRLTN04-002-SO-010, 100x dilution*) was incorrected entered as EGH833 (100x dilution). The error was noted and a comment was added to the quantitation results table as well as the batch printout (worklist report). The result from this sample was correctly reported for sample EGH831.

Data was evaluated in accordance with acceptance criteria specified in DoD QSM 5.1.

Extracted Internal Standard Analytes

Isotopically labeled ¹³C₂-Perfluorotetradecanoic acid (MPFTeDA) is used as an internal standard to quantify native Perfluorotridecanoic acid (PFTrDA) & Perfluorotetradecanoic acid (PFTeDA). The recoveries observed for this extracted internal standard analyte were below the defined lower control limit (LCL) for the following samples:

EGH834 BRLTN04-003-SO-011 EGH836 BRLTN04-004-SS-001

When quantifying analytes using isotope dilution techniques, the extracted internal standard analytes differ from the native compounds only in the presence of the stable isotopes. The physical and chemical behavior of each extracted internal standard analyte is virtually identical to its unlabeled or "native" analog. Any loss (or apparent gain) of the native compound that may occur during any of the sample preparation, extraction, cleanup or determinative steps will be mirrored by a similar loss (or apparent gain) of the extracted internal standard analyte, and as such can be accounted for and corrected. Therefore, the quantification of these target compounds is not affected by the low (or high) recoveries, provided the instrument response for the native and labeled compounds is distinguishable from the instrument or background noise.

Quantitation of PFAS

Many PFAS (e.g. PFOS) have several isomeric forms that may show up as separate or partially-merged peaks in the analytical chromatograms. These peaks will be integrated and the areas summed such that the result represents the concentration of the sum of the linear and branched isomers, per USEPA (2009). Instrumentation is calibrated using certified quantitative standards containing only the linear isomer for all target analytes, except Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS), which are calibrated using certified branched and linear isomer mixtures. As additional certified reference materials containing branched and linear isomers become commercially available, they will be incorporated into the analytical method.

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

Maxxam Job: B780516 – Water Analysis

Sample Analysis

Water samples were initially pre-screened and estimated concentrations were obtained so that samples could be appropriately diluted for quantitative analysis on QC batch 4968581 (2017/05/09). The following sample required 5x dilution for Perfluorohexanesulfonate (PFHxS):

EGH843 BRLTN04-001-GW-013

Detection limit was adjusted accordingly for this analyte.

High concentrations of target analytes were detected in several samples during pre-screening. These samples were diluted prior to analysis, with selected analytes requiring further dilutions:

EGH845	BRLTN01-MW-V1BP2-009	Perfluorooctanesulfonate (PFOS)
EGH846	BRLTN01-MW-BP3-012	Perfluorohexanesulfonate (PFHxS)
EGH847	BRLTN02-003-GW-032	Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS)
EGH848	BRLTN02-002-GW-029	Perfluorooctanesulfonate (PFOS)
EGH849	BRLTN-WW-001	Perfluorooctanesulfonate (PFOS)

Detection limits were adjusted accordingly for these samples.

Data was evaluated in accordance with acceptance criteria specified in DoD QSM 5.1.

Extracted Internal Standard Analytes

Isotopically labeled ${}^{13}C_2$ -6:2 Fluorotelomersulfonate (M2-6:2FTS) and ${}^{13}C_2$ -8:2 Fluorotelomersulfonate (M2-8:2FTS) are used as internal standards to quantify native 6:2 Fluorotelomersulfonate (6:2FTS) and 8:2 Fluorotelomersulfonate (8:2FTS) respectively. The recoveries observed for selected extracted internal standard analytes were above the defined upper control limit (UCL) for the following samples:

EGH843	BRLTN04-001-GW-013	(M2-6:2FTS)
EGH849	BRLTN-WW-001	(M2-6:2FTS, M2-8:2FTS)

When quantifying analytes using isotope dilution techniques, the extracted internal standard analytes differ from the native compounds only in the presence of the stable isotopes. The physical and chemical behavior of each extracted internal standard analyte is virtually identical to its unlabeled or "native" analog. Any loss (or apparent gain) of the native compound that may occur during any of the sample preparation, extraction, cleanup or determinative steps will be mirrored by a similar loss (or apparent gain) of the extracted internal standard analyte, and as such can be accounted for and corrected. Therefore, the quantification of these target compounds is not affected by the low (or high) recoveries, provided the instrument response for the native and labeled compounds is distinguishable from the instrument or background noise.

Quantitation of PFAS

Many PFAS (e.g. PFOS) have several isomeric forms that may show up as separate or partially-merged peaks in the analytical chromatograms. These peaks will be integrated and the areas summed such that the result represents the concentration of the sum of the linear and branched isomers, per USEPA (2009). Instrumentation is calibrated using certified quantitative standards containing only the linear isomer for all target analytes, except Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS), which are calibrated using certified branched and linear isomer mixtures. As additional certified reference materials containing branched and linear isomers become commercially available, they will be incorporated into the analytical method.

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

PROJECT NARRATIVE

Maxxam Analytics Client Project #: M2032.0001 (SAVANNAH)

Client: Aerostar SES LLC Client Project: M2032.0001 (SAVANNAH)

I. SAMPLE RECEIPT/ANALYSIS

a) Sample Listing

Maxxam ID	Client Sample ID	Date Sampled	Date Received	Date Prepped	Date Run	Initial Calibration
PFOS and PFO	•					
EGH830	BRLTN04-002-SS-001	2017/04/20	2017/04/22	2017/05/05	2017/05/13	2017/05/13
EGH831	BRLTN04-002-SO-010	2017/04/20	2017/04/22	2017/05/05	2017/05/13	2017/05/13
EGH833	BRLTN04-003-SS-001	2017/04/20	2017/04/22	2017/05/05	2017/05/13	2017/05/13
EGH834	BRLTN04-003-SO-011	2017/04/20	2017/04/22	2017/05/05	2017/05/13	2017/05/13
EGH836	BRLTN04-004-SS-001	2017/04/20	2017/04/22	2017/05/05	2017/05/13	2017/05/13
EGH838	BRLTN04-004-SO-013	2017/04/20	2017/04/22	2017/05/05	2017/05/13	2017/05/13
EGH841	BRLTN04-001-SS-001	2017/04/20	2017/04/22	2017/05/05	2017/05/13	2017/05/13
EGH842	BRLTN04-001-SO-009	2017/04/20	2017/04/22	2017/05/05	2017/05/13	2017/05/13
EGH844	BRLTN01-001-SO-008	2017/04/20	2017/04/22	2017/05/05	2017/05/13	2017/05/13
EGH850	BRLTN-WS-001	2017/04/21	2017/04/22	2017/05/05	2017/05/13	2017/05/13
PFOS and PFO	DA in water					
EGH832	BRLTN04-002-GW-018	2017/04/20	2017/04/22	2017/05/04	2017/05/09	2017/05/09
EGH835	BRLTN04-003-GW-018	2017/04/20	2017/04/22	2017/05/04	2017/05/09	2017/05/09
EGH837	BRLTN-RS-003	2017/04/20	2017/04/22	2017/05/04	2017/05/09	2017/05/09
EGH839	BRLTN04-004-GW-018	2017/04/20	2017/04/22	2017/05/04	2017/05/09	2017/05/09
EGH840	BRLTN04-004-GW-918	2017/04/20	2017/04/22	2017/05/04	2017/05/09	2017/05/09
EGH843	BRLTN04-001-GW-013	2017/04/20	2017/04/22	2017/05/04	2017/05/09	2017/05/09
EGH845	BRLTN01-MW-V1BP2-009	2017/04/20	2017/04/22	2017/05/04	2017/05/09	2017/05/09
EGH846	BRLTN01-MW-BP3-012	2017/04/20	2017/04/22	2017/05/04	2017/05/09	2017/05/09
EGH847	BRLTN02-003-GW-032	2017/04/21	2017/04/22	2017/05/04	2017/05/09	2017/05/09
EGH848	BRLTN02-002-GW-029	2017/04/21	2017/04/22	2017/05/04	2017/05/09	2017/05/09
EGH849	BRLTN-WW-001	2017/04/21	2017/04/22	2017/05/04	2017/05/09	2017/05/09

Run Date is defined as the date of injection of the last calibration standard (12 hours or less) prior to the samples analyzed within that run sequence. Therefore the time of calibration injection that defines the run date is always within 12 hours of the time of sample injection.

b) Shipping Problems: none encountered

c) Documentation Problems: none encountered

II. SAMPLE PREP:

No problems encountered

III. SAMPLE ANALYSIS:

See also comments within the appropriate Certificate of Analysis

a) Hold Times: all within recommended hold times

- b) Instrument Calibration: all within control limits
- c) Quality Control: All applicable QC meets control criteria, except where otherwise noted.

d) All analytes requiring manual intergration(s) are noted on the sample chromatograms

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for other than the conditions detailed above.

In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. Release of the data contained in this data package has been authorized by the cognizant laboratory official or his/her designee, as verified by this signature.

Steph Pallin Project Manager- Site Assessment and Remediation/Ultra Trace

2017/06/15 Date

2.1 Sample Custody

Maxxam Analytics International 6740 Campobello Rd Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639 www.maxxamanalytics.com

Project Name: Site Inspecti Force Bases in the Eastern	United States	ш	Job No.: M2	2200 PG	savannab)			ANALYS	-		Page 1 of 2		5	
erostar Project Manager: Send Data to: Sampler(s):	Jonny Vanc PS4 ENV-939				0			ANALY3			Sample Types: N = Normal FD = Field Duplicate AB = Ambient Blank or Field	1 Reagent Blank	+	
aboratory Name/Address faxeam Analytice, Inc 740 Campobello Rd fissiessuga, Ontario SN2L8	M K John Som Laboratory Bhipping Addr Maxam Analytics Un Prefix Depor 286 Caynga Rd Cheektowaga, NY 14221 Phase indicate "HOLD FOR Pl	5	Contact: Me Phone: (905 email: MDi) 817-6700,	ax1. 5784	of of the straighter between					EB = Equipment Rinsate Matrix: WG = Cecuridwater SO = Soli WP = Potable Water SE = Sediment W3 = Surface Water			
MAXXAM use only	Sample ID	Data Collected	Time Collected	Sample Type	Matrix	F AC (see)					WQ = Field QC (AB, EB)			
	· BRITN04-002-55-001	04/20/2017	0820	N	50	I					NOT	ES		
	·BRLTN04-002-50-010	04/20/2017	0845	N	50	1_					Internation	1 Collin		
	· BRLIN04-002-GW-018	04/20/2017	the state of the state of the state of the	N	WG	1		-	6	ΞŤ	Sampl	Contraction of the second s		
	· BRLTN04-003-55-001	04/20/2017		N	50	1				B	Heat Treat R			
	- BRLTN04-003-50-011	04/20/2017		N	SO	1					High Risk marcraft			
	BRITN 04-003-6W-018	04/20/2011	and the second se	N	WG	1	-			. C (munified Storage and Disp	iosal .		
	· BRITNO4-004-55-001	04/20/2012	and the second s	N	50	1								
	BRITN-RS-003	04/20/2017	1110	EB	WQ	1		-			Rinsete of Acetato slee	ne follows sumpler		
		04/20/2017	1130	N	SO	.1	_	11000						
	BRITN04-004-GW-018	04/20/2011	1200	N	WG	1		1				*		
	BRLTN04-004-GW-918	04/20/2017		₽D	WG	1								÷
	BRITN04-001-55-001	04/20/2017		N	50	1								
	BRITN04-001-50-009	04/20/2017	1300	N	SO	1		_						
	BRLTN04-001-GW-013	04/20/2017	1312	N	WG	1			10.00					
	BRETNO1-001-50-008	04/20/2017	1405	N	SO	1								
	04/2-11 12@ 1800	RECEIVED BY	CRUSP)	Atter Time) 72 [4.°C	C.	inalýte lat.	ASSESTE		APTINE COME	Very Continuent 1997-211 Statistication of the Statistics 1998-211 Bird Control Statistics of the Statistics 1998-211 Bird Control Statistics of the Statistics	1009805 1146-00000 1146 1177746 111100 1177746 11100 1177746 11100 1177746 11100		
transe brank top	D Desiling	Reptative	P	unit Time		-	11	Hann Seyna Hann Seyna	4 89	NIDOLA.	15-1 15-81-0 4, ¹ 11	201720 2010/00/00 201725 2010/00/00 2010/00	200	
mid Rome	line .	Ported Name		in .		-		5 - 11 all - 11 all		ratua.	The set of	A. Bros. II- sautru T		
		1.811.0	1					Provide survey and		radija.	And a state of the second state	# 7386A (74191) #924: 2000/0012		

Aerosta	rSES	1005 Floyd Cul Oak Ridge, TN 865-481-7	37830		n of Custo sis Reque					412 Page 2 of 2	
Project Name: Site Inspectio Force Bases in the Eastern L	ns of Fire Fighting Foam Usage at Various Air Inited States		Job No.: M2 Installation:		100 March 100			ANALYSIS	~		-
Aerostar Project Manager: Send Data to:	Brian Odom. BOdom@specproenv.com (Jenny Vance, jvance@aerostar.net (478) 397-4906 865) 483-7904						ANAL TOID		Sample Types: 4- N = Normal FD = Fletd Duplicate	
iampler(s):	Frank Johnson	-								AB = Ambient Blank or Field Reagent Blank EB = Equipment Rinsate	14-
Laboratory Name/Address: Maxam Analytics, Inc 6740 Campoballo Rd. Miasissauga, Ontario L5N2L8	Laboratory Shipping Addre Maxxam Analytics olo FadE Depot 299 Coyuga Rd Checktowage, NY 14225 Please indicate "HOLD FOR Pl		Contact: Mo • Phone: (905 email: MDH) 817-5700.	ext. 5784	in of 15 analyses below.			90	Matrix: WG = Groundwater SO = Sol WP = Potable Water SE = Sediment WS = Surface Water	-
MAXXAM use only	Sample ID	Date Collected	Time Gollected	Sample Type	Matrix	FAS (see t	100			WQ = Field QC (AB, EB)	
	BRLTNOI-MW-V1882-009 BRLTNOI-MW-BP3-012 BRLTNO2-003-GW-032 BRLTNO2-003-GW-032 BRLTN-WW-001 BRLTN-WS-001	04/21/2017	0900	N	WG WG WG WG WG SO					Waste Water Somple Waste Soil Sample	
ELINQUISHED BY: Palane Mar Jack Bo Pur Jo and Palane Mar Have	Cantone 04/2-V/A @ BUD Take ASL For	RECEIVED BY Byname Keff H Phone Name Byname Writing Name	~ 6	Santarin 2017 (S Floor Santaring	sr Containers 14101 1422	Analy	Der Rossen Der Dochen Per Dochen Per Bonne Per Bonne Per Bonne Per Bonne	SNAXTH INACTH INACTORI INACTORI INACTORI INTENTO INTO INTO INTO INTO INTO INTO INTO I	3960.6 9806.8	U 0.9 Constraint Production 6.0 V104.23.1 Production 0.072.02 0.000000 0.000000 V104.23.1 Production 0.00000 0.000000 0.000000 0.000000 V104.23.1 Production 0.000000 0.0000000 0.0000000 0.0000000 0.00000000000000000000000000000000000	

DATA VALIDATION REPORT

M2032.0001 (Savannah) Burlington

SAMPLE DELIVERY GROUP: B780315, B780516

Prepared for

Aerostar SES LLC

July 6, 2017

MEC^x, Inc. 8864 Interchange Drive Houston, Texas 77054

www.mecx.net

TABLE OF CONTENTS

ACRON	IYMS AN	ID ABBREVIATIONS	iii
I.	INTROI	DUCTION	. 1
II.	Sample	Management	. 4
III.	Metho	d Analysis – Perfluorinated Compounds by Modified EPA Method 537	. 8
	III.1.	Holding Times	. 8
	III.2.	Calibration	. 8
		III.2.1. Initial Calibration	. 8
		III.2.2. Continuing Calibration	. 8
	III.3.	Quality Control Samples	. 8
		III.3.1. Method Blanks	. 8
		III.3.2. Laboratory Control Samples	. 9
		III.3.3. Surrogate Recovery	. 9
		III.3.4. Matrix Spike/Matrix Spike Duplicate	11
	111.4.	Field QC Samples	12
		III.4.1. Field Blanks and Equipment Blanks	12
		III.4.2. Field Duplicates	12
	III.5.	Internal Standards Performance	
	III.6.	Compound Identification	14
	III.7.	Compound Quantification and Reported Detection Limits	
	111.8.	System Performance	14
IV.	Summa	ary and Conclusions	15
	IV.1.	Precision	15
	IV.2.	Accuracy	15
	IV.3.	Representativeness	15
	IV.4.	Comparability	16

IV.5.	Completeness	16
-------	--------------	----

TABLES

- 1 Sample Identification
- 2 Data Qualifier Reference
- 3 Reason Code Reference
- 4 Method Blank Detects
- 5 Surrogate Recoveries
- 6 FB/EB Detects
- 7 FD RPDs
- 8 Internal Standards Percent Recovery

ACRONYMS AND ABBREVIATIONS

°C	Celsius
%	Percent
%D	percent difference
В	blank contamination
CB	calibration blank
CCAL	continuing calibration
ССВ	continuing calibration blank
CCV	continuing calibration verification
COC	chain of custody
CLP	Contract Laboratory Program
EPA	US Environmental Protection Agency
ER	equipment rinsate
FB	field blank
FD	field duplicate
ICAL	initial calibration
ICB	initial calibration blank
ICL	instrument calibration limit
ICV	initial calibration verification
IS	internal standard
J	estimated value
LCS	laboratory control sample
LOD	limit of detection
LOQ	limit of quantification
MB	method blank
MDL	method detection limit
MS	matrix spike
MSD	matrix spike duplicate
ND	nondetect
PARCC	precision, accuracy, representativeness, comparability, completeness
PFC	perfluorinated compound
QAPP	Quality Assurance Program Plan
QC	quality control
QSM	Quality Systems Manual
R	Rejected
RL	reporting limit
RPD	relative percent difference
RRF	relative response factor
RSD	relative standard deviation
SDG	sample delivery group
ТВ	trip blank
U	not detected
UJ	not detected; associated value is an estimate

I. INTRODUCTION

Task Order Title: M2032.0001 (Savannah) Burlington

Contract: W9128F-15-D-0051

MEC^x Project No.: 1529.001H.01

Sample Delivery Groups: B780315, B780516

Project Manager: Jenny Vance

Matrix: Soil/Water

QC Level: Stage 2B, Stage 4

No. of Samples: 66

Laboratory: Maxxam

TABLE 1 - SAMPLE IDENTIFICATION

Sample Name	Lab Sample Name	Matrix	Collection	Method	Validation Level
BRLTN01-001-SO-008	EGH844	SO	2017-04-20 14:05	E537M	Stage 2B
BRLTN01-MW-BP3-012	EGH846	WG	2017-04-20 16:28	E537M	Stage 4
BRLTN01-MW-V1BP2-009	EGH845	WG	2017-04-20 17:05	E537M	Stage 2B
BRLTN02-002-GW-029	EGH848	WG	2017-04-21 08:36	E537M	Stage 2B
BRLTN02-003-GW-032	EGH847	WG	2017-04-21 09:00	E537M	Stage 2B
BRLTN04-001-GW-013	EGH843	WG	2017-04-20 13:12	E537M	Stage 2B
BRLTN04-001-SO-009	EGH842	SO	2017-04-20 13:00	E537M	Stage 2B
BRLTN04-001-SS-001	EGH841	SO	2017-04-20 12:35	E537M	Stage 2B
BRLTN04-002-GW-018	EGH832	WG	2017-04-20 09:10	E537M	Stage 2B
BRLTN04-002-SO-010	EGH831	SO	2017-04-20 08:45	E537M	Stage 2B
BRLTN04-002-SS-001	EGH830	SO	2017-04-20 08:20	E537M	Stage 2B
BRLTN04-003-GW-018	EGH835	WG	2017-04-20 10:20	E537M	Stage 2B
BRLTN04-003-SO-011	EGH834	SO	2017-04-20 10:00	E537M	Stage 2B
BRLTN04-003-SS-001	EGH833	SO	2017-04-20 09:40	E537M	Stage 2B
BRLTN04-004-GW-018	EGH839	WG	2017-04-20 12:00	E537M	Stage 2B
BRLTN04-004-GW-918	EGH840	WG	2017-04-20 12:00	E537M	Stage 2B
BRLTN04-004-SO-013	EGH838	SO	2017-04-20 11:30	E537M	Stage 2B
BRLTN04-004-SS-001	EGH836	SO	2017-04-20 11:00	E537M	Stage 4

Burlington DV Report.2.Docx RV2

Sample Name	Lab Sample Name	Matrix	Collection	Method	Validation Level
BRLTN-RS-003	EGH837	WQ	2017-04-20 11:10	E537M	Stage 2B
BRLTN-WS-001	EGH850	SO	2017-04-21 12:20	E537M	Stage 2B
BRLTN-WW-001	EGH849	WG	2017-04-21 12:15	E537M	Stage 2B
BRLTN01-001-GW-013	EGG618	WG	2017-04-20 14:25	E537M	Stage 2B
BRLTN01-002-GW-015	EGG586	WG	2017-04-19 08:50	E537M	Stage 4
BRLTN01-002-SO-007	EGG602	SO	2017-04-19 08:40	E537M	Stage 2B
BRLTN01-002-SO-907	EGG603	SO	2017-04-19 08:40	E537M	Stage 4
BRLTN01-003-SD-001	EGG575	SE	2017-04-18 13:10	E537M	Stage 4
BRLTN01-003-SD-901	EGG576	SE	2017-04-18 13:10	E537M	Stage 2B
BRLTN01-003-SW-001	EGG577	WS	2017-04-18 13:10	E537M	Stage 2B
BRLTN01-003-SW-901	EGG578	WS	2017-04-18 13:10	E537M	Stage 2B
BRLTN01-MW102-011	EGG583	WG	2017-04-18 16:45	E537M	Stage 2B
BRLTN01-MW103-009	EGG584	WG	2017-04-18 17:52	E537M	Stage 2B
BRLTN01-MW103-909	EGG585	WG	2017-04-18 17:52	E537M	Stage 2B
BRLTN01-TRENCHSUMP-001	EGG587	WG	2017-04-19 11:30	E537M	Stage 4
BRLTN01-V1MW14L-008	EGG588	WG	2017-04-19 13:21	E537M	Stage 2B
BRLTN02-001-GW-027	EGG617	WG	2017-04-20 14:35	E537M	Stage 2B
BRLTN02-001-SO-020	EGG596	SO	2017-04-18 14:05	E537M	Stage 2B
BRLTN02-001-SS-001	EGG594	SO	2017-04-18 12:55	E537M	Stage 2B
BRLTN02-001-SS-901	EGG595	SO	2017-04-18 12:55	E537M	Stage 4
BRLTN02-002-SO-020	EGG599	SO	2017-04-18 15:30	E537M	Stage 2B
BRLTN02-002-SS-001	EGG597	SO	2017-04-18 14:45	E537M	Stage 2B
BRLTN02-003-SO-025	EGG600	SO	2017-04-18 17:05	E537M	Stage 2B
BRLTN02-003-SS-001	EGG598	SO	2017-04-18 16:00	E537M	Stage 2B
BRLTN02-004-SD-001	EGG581	SE	2017-04-18 15:00	E537M	Stage 2B
BRLTN02-004-SW-001	EGG582	WS	2017-04-18 14:54	E537M	Stage 2B
BRLTN03-001-GW-022	EGG616	WG	2017-04-20 13:03	E537M	Stage 2B
BRLTN03-001-SO-014	EGG593	SO	2017-04-18 11:20	E537M	Stage 2B
BRLTN03-001-SS-001	EGG592	SO	2017-04-18 10:37	E537M	Stage 2B

Burlington DV Report.2.Docx RV2

Sample Name	Lab Sample Name	Matrix	Collection	Method	Validation Level
BRLTN03-002-GW-022	EGG615	WG	2017-04-20 12:13	E537M	Stage 2B
BRLTN03-002-SO-015	EGG590	SO	2017-04-18 09:45	E537M	Stage 2B
BRLTN03-002-SS-001	EGG589	SO	2017-04-18 08:52	E537M	Stage 2B
BRLTN03-003-SD-001	EGG579	SE	2017-04-18 13:56	E537M	Stage 2B
BRLTN03-003-SW-001	EGG580	WS	2017-04-18 13:56	E537M	Stage 2B
BRLTN05-001-GW-017	EGG607	WG	2017-04-19 11:15	E537M	Stage 2B
BRLTN05-001-SO-014	EGG606	SO	2017-04-19 11:00	E537M	Stage 2B
BRLTN05-001-SS-001	EGG604	SO	2017-04-19 10:25	E537M	Stage 2B
BRLTN05-001-SS-901	EGG605	SO	2017-04-19 10:25	E537M	Stage 2B
BRLTN05-002-GW-033	EGG613	WG	2017-04-19 16:55	E537M	Stage 2B
BRLTN05-002-GW-933	EGG614	WG	2017-04-19 16:55	E537M	Stage 2B
BRLTN05-002-SO-028	EGG611	SO	2017-04-19 16:25	E537M	Stage 2B
BRLTN05-002-SO-928	EGG612	SO	2017-04-19 16:25	E537M	Stage 2B
BRLTN05-002-SS-001	EGG610	SO	2017-04-19 15:00	E537M	Stage 2B
BRLTN05-003-SO-032	EGG609	SO	2017-04-19 14:17	E537M	Stage 2B
BRLTN05-003-SS-001	EGG608	SO	2017-04-19 11:45	E537M	Stage 2B
BRLTN-RS-001	EGG574	WQ	2017-04-18 12:50	E537M	Stage 2B
BRLTN-RS-002	EGG601	WQ	2017-04-19 07:30	E537M	Stage 2B
BRLTN-SB-001	EGG591	WQ	2017-04-18 09:19	E537M	Stage 2B

II. SAMPLE MANAGEMENT

According to the case narrative and the chains-of-custody (COCs) provided by the laboratory for sample delivery groups (SDGs) B780315, B780516:

- Cooler temperatures listed on the COCs were within the temperature limits of <6°C and >0°C.
- Field and laboratory personnel signed and dated the COCs.

TABLE 2 - DATA QUALIFIER REFERENCE

Qualifier	Definition
R	The sample results are rejected because of serious deficiencies in the ability to analyze the sample and to meet quality control (QC) criteria. The presence or absence of the analyte cannot be verified.
U	The analyte was analyzed for but was nondetect (ND) above the reported sample quantification limit.
В	The reported concentration is less than 5 times the concentration reported in an associated field or lab blank.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. J- denotes a low bias for the sample results and J+ for a high bias.
UJ	The material was analyzed for but was ND. The associated value is an estimate and may be inaccurate or imprecise.

TABLE 3 - REASON CODE REFERENCE

Reason Code	Definition
01	Sample received outside of 4+/-2 degrees Celsius (°C)
01A	Improper sample preservation
02	Holding time exceeded
02A	Extraction
02B	Analysis
03	Instrument performance – outside criteria
03A*	Bromofluorobenzene (BFB)
03B*	Decafluorotriphenylphosphine (DFTPP)
03C*	dichlorodiphenyltrichloroethane (DDT) and/or endrin % breakdown exceeds criteria
03D	Retention time windows
03E	Resolution
04	ICAL results outside specified criteria
04A	Compound mean RRF QC criteria not met
04B	Individual % RSD criteria not met
04C	r < 0.995 or r ² < 0.99
04D	ICAL % Recovery
05	Continuing calibration results outside specified criteria

Reason Code	Definition
05A	Compound mean RRF QC criteria not met
05B	Compound % Difference QC criteria not met
06	Result qualified as a result of the 5x/10x blank correction
06A	Method or preparation blank
06B	ICB or CCB
06C	ER
06D	ТВ
06E	FB
07	Surrogate recoveries outside control limits
07A	Sample
07B	Associated MB or LCS
08	MS/MSD/Duplicate results outside criteria
08A	MS and/or MSD recovery not within control limits (accuracy)
08B	% RPD outside acceptance criteria (precision)
09*	Post digestion spike outside criteria graphite furnace atomic absorption (GFAA)
10	Internal standards outside specified control limits
10A	Recovery
10B	Retention time
11	LCS recoveries outside specified limits
11A	Recovery
11B	% RPD (if run in duplicate)
12*	Interference check standard
13*	Serial dilution
14*	Tentatively identified compounds
15	Quantification
16	Multiple results available; alternate analysis preferred
17	Field duplicate RPD criteria is exceeded
18*	Percent difference between original and second column exceeds QC criteria
19	Professional judgment was used to qualify the data
20*	Pesticide clean-up checks
21	Target compound identification

M2032.0001

Reason Code	Definition
22*	Radiological calibration
23*	Radiological quantification
24	Reported result and/or lab qualifier revised to reflect validation findings

III. METHOD ANALYSIS – PERFLUORINATED COMPOUNDS BY MODIFIED EPA METHOD 537

L. Calvin of MEC^X reviewed these SDGs July 6 to July 10, 2017

III.1. HOLDING TIMES

SDGs B780315, B780516

The holding times specified in the QAPP were met. Samples were extracted within 28 days of collection and analyzed within 45 days of extraction.

III.2. CALIBRATION

Calibration criteria were met, with exceptions noted in the tables below.

III.2.1. INITIAL CALIBRATION

SDGs B780315, B780516

Initial calibration criteria were met. Recoveries were within 70-130% for the lowest level of each initial calibration and 75-125% for the remaining levels, and all correlation coefficient r^2 values were within the control limit of ≥ 0.990 . The calculated peak asymmetry factors were within the control range of 0.8-1.5. MEC^X noted the laboratory utilized as the calibration method a weighted (1/X) linear initial calibration standard curve not forced through zero.

III.2.2. CONTINUING CALIBRATION

SDGs B780315, B780516

The initial calibration verification (ICV) and continuing calibration verification (CCV) recoveries were within the control limits of 75-125%. Low-level check standard (ICS) recoveries were within the control limits of 70-130%.

III.3. QUALITY CONTROL SAMPLES

III.3.1. METHOD BLANKS

The method blanks associated with the analyses of the soil and water samples had no target analyte detects above the respective soil and water detection limits (DLs), with exceptions noted in the table below. The method blank detects were not sufficient to qualify most results above the LOQ. Remaining detects were qualified as nondetects (U) at the LOD if detected below the LOD, or at the level of contamination if detected above.

Table 4-Method Blank Detects

Method Blank Batch	Detect	Concentration	Affected Samples	
4963931	6:2-FTS	0.014 μg/L	BRLTN05-001-GW-017	
			BRLTN01-003-SD-001	
			BRLTN01-003-SD-901	
4966650	6:2-FTS	6:2-FTS 0.27 μg/Kg	0.27 μg/Kg	BRLTN03-003-SD-001
			BRLTN02-004-SD-001	
			BRLTN03-002-SS-001	

SDG B780315

Method Blank Batch	Detect	Concentration	Affected Samples
			BRLTN03-002-SO-015
			BRLTN03-001-SS-001
			BRLTN03-001-SO-014
			BRLTN02-002-SS-001
			BRLTN02-003-SS-001
			BRLTN02-002-SO-020
			BRLTN05-001-SS-001
			BRLTN05-001-SS-901
			BRLTN05-001-SO-014
			BRLTN05-003-SS-001
			BRLTN05-003-SO-032
4966650	PFDA	0.27 μg/Kg	ND in associated samples
		0.19 µg/Кg	BRLTN01-002-SO-007
4966672	PFTeDA		BRLTN05-002-SS-001
4500072	FFIEDA		BRLTN05-002-SO-028
			BRLTN05-002-SO-928

III.3.2. LABORATORY CONTROL SAMPLES

SDGs B780315, B780516

Recoveries affecting sample data were within the control limits of 70-130%, and RPDs for LCS/LCSD pairs were within the control limit of \leq 30%.

III.3.3. SURROGATE RECOVERY

Surrogate recoveries were not evaluated in samples analyzed at dilutions of 10× or greater, as the surrogates were considered diluted out. Individual analytes reported from those dilutions were not qualified. Surrogate standard recoveries were within the QAPP control limits of 80-140% for soils and 70-130% for waters, with exceptions listed in the tables below. Results associated with the recovery outliers were qualified as estimated (J or UJ) in the affected site samples.

Table 5-Surrogate Recoveries

Surrogate	Sample	Recovery	Affected Target Analytes
	BRLTN01-V1MW14L-008	69	
	BRLTN02-001-SS-001	79	
	BRLTN02-003-SS-001	70	
13C4-perfluorooctanesulfonate	BRLTN02-003-SO-025	70	All sulfonate analytes
13c4-perhabitotetanesanonate	BRLTN05-001-SS-001	71	
	BRLTN05-001-SS-901	63	
	BRLTN05-001-SO-014	73	
	BRLTN05-001-GW-017	64	

SDG B780315

Surrogate	Sample	Recovery	Affected Target Analytes
	BRLTN05-003-SS-001	60	
	BRLTN05-003-SO-032	64	
	BRLTN05-002-SO-028	57	
	BRLTN05-002-SO-928	59	
	BRLTN05-002-GW-933	66	
	BRLTN02-001-GW-027	68	
	BRLTN03-002-SO-015	75	
	BRLTN03-001-SS-001	76	
	BRLTN02-003-SS-001	71	
	BRLTN02-002-SO-020	71	
	BRLTN02-003-SO-025	73	
	BRLTN05-001-SS-901	66	
13C4-perfluorooctanoic acid	BRLTN05-001-SO-014	76	All acid analytes
	BRLTN05-001-GW-017	65	
	BRLTN05-003-SS-001	71	
	BRLTN05-003-SO-032	63	
	BRLTN05-002-SO-028	60	
	BRLTN05-002-SO-928	66	
	BRLTN05-002-GW-933	66	
	BRLTN01-V1MW14L-008	66	
	BRLTN03-002-SS-001	71	
	BRLTN03-002-SO-015	60	
	BRLTN03-001-SS-001	62	
	BRLTN03-001-SO-014	69	
	BRLTN02-001-SS-001	70	
	BRLTN02-001-SO-020	72	
	BRLTN02-002-SS-001	62	
	BRLTN02-003-SS-001	52	
13C8-perfluorooctanesulfonamide	BRLTN02-002-SO-020	60	PFOSA
13cb-perhuorooctanesunonamide	BRLTN02-003-SO-025	58	
	BRLTN05-001-SS-001	67	
	BRLTN05-001-SS-901	58	
	BRLTN05-001-SO-014	53	
	BRLTN05-001-GW-017	54	
	BRLTN05-003-SS-001	57	
	BRLTN05-003-SO-032	51	
	BRLTN05-002-SS-001	69	
	BRLTN05-002-SO-028	47	
	BRLTN05-002-SO-928	47	

M2032.0001

SDC 0700E16

Surrogate	Sample	Recovery	Affected Target Analytes
	BRLTN05-002-GW-933	67	
	BRLTN03-002-GW-022	58	

Surrogate	Sample	Recovery	Affected Target Analytes
	BRLTN04-002-SS-001	62%	All sulfonate analytes
	BRLTN04-003-SO-011	54%	
	BRLTN04-004-SS-001	72%	
13C4-perfluorooctanesulfonate	BRLTN04-004-SO-013	62%	
	BRLTN04-001-SS-001	60%	
	BRLTN04-001-SO-009	57%	
	BRLTN01-001-SO-008	73%	
	BRLTN04-002-SS-001	71%	
	BRLTN04-002-SO-010	74%	
	BRLTN04-003-SO-011	63%	
	BRLTN04-004-SS-001	75%	
13C4-perfluorooctanoic acid	BRLTN04-004-SO-013	68%	All acid analytes
	BRLTN04-001-SS-001	76%	
	BRLTN04-001-SO-009	65%	
	BRLTN01-001-SO-008	77%	
	BRLTN-WS-001	65%	
	BRLTN04-002-SS-001	74%	
	BRLTN04-003-SS-001	67%	
	BRLTN04-003-SO-011	60%	
13C8-perfluorooctanesulfonamide	BRLTN04-004-SS-001	73%	PFOSA
1308-perindorooctanesunonannue	BRLTN04-004-SO-013	66	
	BRLTN04-001-SS-001	73	
	BRLTN04-001-SO-009	61	
	BRLTN01-001-SO-008	72	

III.3.4. MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were performed on the samples listed below. Recoveries were not evaluated for target analytes present in the parent sample at concentrations >4× the spike amount, or in parent samples requiring dilutions of 10× or greater. Qualifications were not assigned for a single recovery outlier not occurring in both the MS and MSD of a pair, or for parent sample nondetects associated with high recoveries. Nondetects in the parent sample were not qualified for RPD outliers. With exceptions noted below, recoveries and RPDs affecting sample data were within the control limits of 70-130% and \leq 30%, respectively.

SDG B780315

MS/MSD analyses were performed on samples BRLTN05-002-GW-033, BRLTN01-003-SD-001, BRLTN02-001-SS-001, and BRLTN01-002-SO-007 for all analytes, and on sample BRLTN02-001-SS-001 for PFOS only. The RPD exceeded the control limit for PFOS in the MS/MSD of sample BRLTN02-001-SS-001 at 42%. The parent sample detect for PFOS was qualified as estimated (J). Evaluated recoveries and remaining RPDs were within the control limits.

Samples BRLTN01-003-SW-001 and BRLTN01-MW103-009 were designated on the COC for MS/MSD analyses; however, due to high concentrations of several target analytes in the native samples, the laboratory performed laboratory duplicate analyses instead. The laboratory duplicate analyses were not evaluated by the reviewer, as most RPDs were not calculated by the laboratory, and footnotes attributed RPD outliers to varying dilutions required.

SDG B780516

MS/MSD analyses were not performed on a sample in this SDG. MEC^X evaluated method accuracy and precision based on the LCS/LCSD results.

III.4. FIELD QC SAMPLES

MEC^x evaluated field QC samples, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. MEC^x used the remaining detects to evaluate the associated site samples. Findings associated with field QC samples are summarized below.

III.4.1. FIELD BLANKS AND EQUIPMENT BLANKS

The field and equipment blanks and detects, if any, are listed in the tables below. The detected concentrations were not considered sufficient to qualify site sample results.

<u>SDG B780315</u>				
Detects	Concentration			
none	N/A			
none	N/A			
none	N/A			
	none none			

Table 6-FB/EB Detects

SDG B780516

Field or Equipment Blank	Detects	Concentration
BRLTN-RS-003	none	N/A

III.4.2. FIELD DUPLICATES

Field duplicate pairs are listed below. RPDs for common detects above the LOQ were within the control limit of \leq 30%, and detects below the LOQ in one or both samples of a pair were within the reasonable control limit of ±LOQ, with exceptions noted in the tables below. Target analyte results for the outlier RPDs were qualified as estimated (J) in both samples of a pair.

Table 7-FD RPDs

SDG B780315

Seven field duplicate pairs were identified in this SDG, as noted in the table below.

Parent Sample	Field Duplicate	Target Analyte	RPD Outliers
BRLTN01-003-SD-001	BRLTN01-003-SD-901	N/A	none
BRLTN01-003-SW-001	BRLTN01-003-SW-901	N/A	none
BRLTN01-MW103-009	BRLTN01-MW103-909	N/A	none
BRLTN02-001-SS-001	BRLTN02-001-SS-901	PFHxS	51%
BRLTN01-002-SO-007	BRLTN01-002-SO-907	PFHxS	51%
DRLINU1-002-30-007	BRL1N01-002-30-907	PFOS	68%
BRLTN05-001-SS-001	BRLTN05-001-SS-901	N/A	none
BRLTN05-002-SO-028	BRLTN05-002-SO-928	N/A	none

SDG B780516

One field duplicate pair was identified in this SDG, as noted in the table below.

Parent Sample	Field Duplicate	Target Analyte	RPD Outliers
BRLTN04-004-GW-018	BRLTN04-004-GW-918	N/A	none

III.5. INTERNAL STANDARDS PERFORMANCE

The applicable labeled internal standard recoveries were within the control limits of $\pm 50\%$ of the average peak areas of the initial calibration, except as noted in the tables below. Results for the associated target compounds were qualified as estimated (UJ or J) in the affected samples.

Table 8-Internal Standards Percent Recovery

<u>SDG B780315</u>			
Internal Standard	% Recovery	Affected Samples	Associated Target Analyte(s)
MPFDoA	49%	BRLTN05-001-GW-017	PFDoA
MPFTeDA	48%	BRLTN05-001-SS-901	PFTeDA and PFTrDA
	21%	BRLTN05-001-GW-017	
MPFUnA	41%	BRLTN05-002-SS-001	PFUnA
	47%	BRLTN05-003-SO-032	
MPFOSA	47%	BRLTN05-002-SO-028	PFOSA
	47%	BRLTN05-002-SO-928	

SDG B780516

Internal Standard	% Recovery	Affected Samples	Associated Target Analyte(s)
MPFTeDA	45%	BRLTN04-003-SO-011	PFTeDA and PFTrDA
MIFFIEDA	46%	BRLTN04-004-SS-001	
M2-6:2-FTS	152%	BRLTN04-001-GW-013	6:2-FTS
1012-0.2-F13	209%	BRLTN-WW-001	0.2-F13
M2-8:2-FTS	138%	BRLTN04-001-GW-013	8:2-FTS
1012-0.2-113	174%	BRLTN-WW-001	0.2-513

III.6. COMPOUND IDENTIFICATION

SDGs B780315, B780516

Compound identification was verified for the following samples: soil samples BRLTN01-003-SD-001, BRLTN02-001-SS-901, BRLTN01-002-SO-907 (SDG B780315), and BRLTN04-004-SS-001 (SDG 780516), and water samples BRLTN01-002-GW-015, BRLTN01-TRENCHSUMP-001 (SDG B780315), and BRLTN01-MW-BP3-012 (SDG 780516). The laboratory analyzed for 18 perfluorinated compounds by modified EPA Method 537. Review of retention times and the ion chromatograms indicated no issues with compound identification.

III.7. COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Calculations were verified and sample results reported on the sample result summaries were verified against the raw data for the samples listed above (see Compound Identification section). Quantitation verification was limited based upon the significant figures presented in the raw data and were therefore estimations of the actual sample amounts. The reviewer considered the concentration verified within that limitation. The laboratory calculated and reported compound-specific detection limits. Detects below the LOQ were qualified as estimated (J). Nondetects are valid to the LOD.

Most samples were initially analyzed undiluted. Eleven of 25 soil samples and 13 of 16 water site samples in SDG 780315, and two of 10 soil samples and five of 10 water site samples in SDG 780516 were reanalyzed at one or more dilutions to report various target analytes within the linear range of the calibration. Analytes were reported from the least dilute analysis possible of multiple dilutions to report all target analytes within the linear calibration range.

The laboratory integrated isomeric forms for the PFCs with linear and branched isomers as is required by Revision 1.1 of EPA Method 537.

III.8. SYSTEM PERFORMANCE

<u>SDGs B780315, B780516</u> No issues were noted with system performance.

IV. SUMMARY AND CONCLUSIONS

MEC^x evaluated a total of 1116 data records from field samples during the validation and qualified 415 records (37.2% of the data) as nondetect (U) or estimated values (J/UJ). The qualification was required for method blank contamination, surrogate recovery outliers, internal standard recovery outliers, MS/MSD precision outliers and field duplicate precision outliers. Nondetect compounds were flagged (U) to indicate that the compound was analyzed for but not detected above the laboratory detection limit (MDL). Specific qualification were discussed in the text above.

Overall, the quality of the data was acceptable. The precision (99.4%) was acceptable and while the accuracy results (61.4%) were lower, the accuracy was acceptable for the project. Other data quality indicators (DQI) (representativeness, comparability and completeness) met the project objectives. Each of these DQIs is discussed below.

IV.1. PRECISION

Precision is a measure of the agreement between duplicate sample measurements of the same quantity and is reflected in the relative percent difference (RPD) between spikes and the RPD for the field duplicate pair analysis. Precision was measured at 99.4%. Precision was considered acceptable for the project.

IV.2. ACCURACY

Accuracy is measured by the results from the recovery of known amounts of compounds or elements from laboratory control samples (LCS), matrix spikes (MS), internal standards and surrogate recoveries. Method blank contamination is also considered relevant to project accuracy. The accuracy was 61.4%. The lower accuracy value was largely due to the number of surrogate outliers in the soil samples.

Surrogates are added to the sample prior to extraction and are an indication of extraction and injection efficiency. The surrogates failed to meet the laboratory's QC acceptance criteria. The same surrogate compounds are also used as isotope dilution internal standards for specific target analytes. Sample concentrations were quantified by isotope dilution; therefore, the bias in the samples would be considered minimal. However, not all internal standard recoveries met the laboratory's QC acceptance criteria and separate qualifications were applied. The surrogate qualifications are considered a conservative measure.

IV.3. REPRESENTATIVENESS

The measures of representativeness – sample handling, analytical blank analysis, were met. Designated analytical protocols were followed. The laboratory did utilize a weighted 1/X calibration curve which was not forced through zero. Although this is a deviation from Method 537, it is acceptable on DoD projects and was considered acceptable by the reviewer. Holding times were met for all analyses. No analytical problems were noted which would impact data representativeness.

Burlington DV Report.2.Docx RV2

IV.4. COMPARABILITY

The samples were analyzed using appropriate approved methods of analysis. All data were reported correctly using standard units.

IV.5.COMPLETENESS

Completeness is the amount of validated data compared to the planned amount of data and is expressed as a percentage of the usable data divided by the total number of data points. Although one data point was rejected by the reviewer, it was not a target compound and was not counted against the overall percent completeness. Of the 1116 target data points, no data points were rejected, resulting in a completeness of 100%.

V. REFERENCES

Aerostar, 2016. Final Quality Assurance Project Plan for Site Inspections of Fire Fighting Foam Usage at Various Air Force Bases in the Eastern United States, January 2016.

Aerostar, 2016a. Draft Final Uniform Federal Policy (UFP) Quality Assurance Project Plan (QAPP) for Site Inspections Fire Fighting Foam Usage at Various Air Force Bases in the Eastern United States, Addendum 14, Field Sampling Plan for Vermont Air National Guard Base, Chittenden County, Vermont, February 2017.

Department of Defense (DOD), 2017. *DoD Quality Systems Manual for Environmental Laboratories,* Version 5.1. January 2017.

EPA, 2009. Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS), Version 1.1, September 2009. EPA Document #: EPA/600/R-08/092.

EPA, 2014. EPA Contract Laboratory Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review, EPA/540-R-014-002.

EPA (U.S. Environmental Protection Agency), January 2009. OSWER 9200-1-85. *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use*. EPA-540/R-08-005.

Validated Sample Result Forms: B780315

Sample Name BRLTN01-001-	GW-013	Matrix Ty	pe: W		R				
Lab Sample Name: EGG618	Sampl	Sample Date/Time: 2017-04-20					Validation Level: Stage 2B		
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	1.3	0.032	0.10	0.20	ug/L			
:2 FLUOROTELOMER SULFONATE	39108-34-4	0.011	0.0072	0.020	0.040	ug/L	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	1.1	0.0096	0.020	0.040	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.36	0.013	0.028	0.040	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.020	0.0092	0.020	0.040	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.020	0.0080	0.020	0.040	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.020	0.0056	0.020	0.040	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.30	0.0066	0.020	0.040	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	6.1	0.068	0.20	0.40	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	1.8	0.0058	0.020	0.040	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.020	0.0092	0.020	0.040	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.0080	0.0072	0.020	0.040	ug/L	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	8.8	0.052	0.20	0.40	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.47	0.0092	0.020	0.040	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.91	0.0054	0.020	0.040	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.020	0.0076	0.020	0.040	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.020	0.0066	0.020	0.040	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	0.012	0.0086	0.020	0.040	ug/L	J	J	

Sample Name BRLTN01-002-	GW-015	Matrix T	ype: W	r	R	Result Type: TRG			
Lab Sample Name: EGG586	Sampl	e Date/Time	2017	-04-19	08:50	Validati	on Level: Sta	age 4	
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	1.4	0.032	0.10	0.20	ug/L			
:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.10	0.036	0.10	0.20	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.52	0.048	0.10	0.20	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.31	0.066	0.14	0.20	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.10	0.046	0.10	0.20	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.10	0.040	0.10	0.20	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.10	0.028	0.10	0.20	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.25	0.033	0.10	0.20	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	13	0.34	1.0	2.0	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	1.6	0.029	0.10	0.20	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.10	0.046	0.10	0.20	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	1.7	0.036	0.10	0.20	ug/L			
PERFLUOROOCTANE SULFONATE	1763-23-1	3.0	0.026	0.10	0.20	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	2.7	0.046	0.10	0.20	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.54	0.027	0.10	0.20	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.10	0.033	0.10	0.20	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.10	0.043	0.10	0.20	ug/L	U	U	

Sample Name BRLTN01-002-	SO-007	Matrix Ty	pe: So)	Result Type: TRG					
Lab Sample Name: EGG602	Sample Date/Time: 2017-04-19				08:40		Validation Level: Stage 2B			
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code	
5:2 FLUOROTELOMER SULFONATE	27619-97-2	<5.1	2.0	5.1	8.5	ug/kg	U	U		
3:2 FLUOROTELOMER SULFONATE	39108-34-4	<5.1	2.7	5.1	8.5	ug/kg	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	<5.1	1.4	5.1	8.5	ug/kg	U	U		
PERFLUOROBUTANOIC ACID	375-22-4	4.5	2.0	5.1	8.5	ug/kg	J	J		
PERFLUORODECANE SULFONATE	335-77-3	<5.1	2.0	5.1	8.5	ug/kg	U	U		
PERFLUORODECANOIC ACID	335-76-2	<3.4	1.1	3.4	8.5	ug/kg	U	U		
PERFLUORODODECANOIC ACID	307-55-1	<5.1	1.9	5.1	8.5	ug/kg	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	<5.1	1.4	5.1	8.5	ug/kg	U	U		
PERFLUOROHEXANE SULFONATE	108427-53-8	28	2.0	5.1	8.5	ug/kg		J	17	
PERFLUOROHEXANOIC ACID	307-24-4	17	1.6	5.1	8.5	ug/kg				
PERFLUORONONANOIC ACID	375-95-1	<5.1	1.4	5.1	8.5	ug/kg	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	940	22	51	85	ug/kg				
PERFLUOROOCTANE SULFONATE	1763-23-1	590	18	51	85	ug/kg		J	17	
PERFLUOROOCTANOIC ACID	335-67-1	18	2.2	5.1	8.5	ug/kg				
PERFLUOROPENTANOIC ACID	2706-90-3	3.0	1.5	5.1	8.5	ug/kg	J	J		
PERFLUOROTETRADECANOIC ACID	376-06-7	1.0	0.94	3.4	8.5	ug/kg	J	В	06A	
PERFLUOROTRIDECANOIC ACID	72629-94-8	<3.4	1.0	3.4	8.5	ug/kg	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	<5.1	1.5	5.1	8.5	ug/kg	U	U		

Analysis Method:	EPA 537 n	n								
Sample Name BRLTN01-002	-SO-907	Matrix T	ype: So)	R	esult Typ	e: TRG			
Lab Sample Name: EGG603	Sampl	Sample Date/Time: 2017-04-19			08:40		Validation Level: Stage 4			
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
6:2 FLUOROTELOMER SULFONATE	27619-97-2	<6.2	2.4	6.2	10	ug/kg	U	U		
8:2 FLUOROTELOMER SULFONATE	39108-34-4	<6.2	3.3	6.2	10	ug/kg	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	<6.2	1.8	6.2	10	ug/kg	U	U		
PERFLUOROBUTANOIC ACID	375-22-4	4.6	2.4	6.2	10	ug/kg	J	J		
PERFLUORODECANE SULFONATE	335-77-3	<6.2	2.4	6.2	10	ug/kg	U	U		
PERFLUORODECANOIC ACID	335-76-2	2.8	1.3	4.1	10	ug/kg	J	J		
PERFLUORODODECANOIC ACID	307-55-1	<6.2	2.3	6.2	10	ug/kg	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	2.1	1.8	6.2	10	ug/kg	J	J		
PERFLUOROHEXANE SULFONATE	108427-53-8	47	2.4	6.2	10	ug/kg		J	17	
PERFLUOROHEXANOIC ACID	307-24-4	16	2.0	6.2	10	ug/kg				
PERFLUORONONANOIC ACID	375-95-1	3.2	1.8	6.2	10	ug/kg	J	J		
PERFLUOROOCTANE SULFONAMIDE	E 754-91-6	1100	27	62	100	ug/kg				
PERFLUOROOCTANE SULFONATE	1763-23-1	1200	22	62	100	ug/kg		J	17	
PERFLUOROOCTANOIC ACID	335-67-1	25	2.7	6.2	10	ug/kg				
PERFLUOROPENTANOIC ACID	2706-90-3	3.8	1.9	6.2	10	ug/kg	J	J		
PERFLUOROTETRADECANOIC ACID	376-06-7	<4.1	1.1	4.1	10	ug/kg	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	<4.1	1.2	4.1	10	ug/kg	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	<6.2	1.9	6.2	10	ug/kg	U	U		

Analysis Method:	EPA 537 m	l							
Sample Name BRLTN01-003-	SD-001	Matrix T	ype: SE	l,	R	esult Typ	e: TRG		
Lab Sample Name: EGG575	Sample	Date/Time	2017-	-04-18	13:10		Validation Level: Stage 4		
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	1.2	0.23	0.60	1.0	ug/kg		В	06A
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.65	0.32	0.60	1.0	ug/kg	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	1.2	0.17	0.60	1.0	ug/kg			
PERFLUOROBUTANOIC ACID	375-22-4	0.53	0.23	0.60	1.0	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	<0.60	0.23	0.60	1.0	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	0.28	0.13	0.40	1.0	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	0.23	0.22	0.60	1.0	ug/kg	J	J	
PERFLUOROHEPTANOIC ACID	375-85-9	0.51	0.17	0.60	1.0	ug/kg	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	16	0.23	0.60	1.0	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	1.9	0.19	0.60	1.0	ug/kg			
PERFLUORONONANOIC ACID	375-95-1	0.57	0.17	0.60	1.0	ug/kg	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	1.0	0.26	0.60	1.0	ug/kg			
PERFLUOROOCTANE SULFONATE	1763-23-1	170	2.1	6.0	10	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	2.2	0.26	0.60	1.0	ug/kg			
PERFLUOROPENTANOIC ACID	2706-90-3	1.0	0.18	0.60	1.0	ug/kg			
PERFLUOROTETRADECANOIC ACID	376-06-7	0.16	0.11	0.40	1.0	ug/kg	J	J	
PERFLUOROTRIDECANOIC ACID	72629-94-8	0.17	0.12	0.40	1.0	ug/kg	J	J	
PERFLUOROUNDECANOIC ACID	2058-94-8	0.19	0.18	0.60	1.0	ug/kg	J	J	

M2032.0001

Thursday, October 19, 2017

Sample Name BRLTN01-003-	SD-901	Matrix T	pe: SI	Ξ	R	lesult Typ			
Lab Sample Name: EGG576	Sample	Sample Date/Time: 2			13:10		Validation Level: Stage 2B		
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	1.3	0.30	0.78	1.3	ug/kg	J	В	06A
2:2 FLUOROTELOMER SULFONATE	39108-34-4	0.49	0.42	0.78	1.3	ug/kg	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	1.3	0.22	0.78	1.3	ug/kg			
PERFLUOROBUTANOIC ACID	375-22-4	0.67	0.30	0.78	1.3	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.78	0.30	0.78	1.3	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	0.35	0.17	0.52	1.3	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	< 0.78	0.29	0.78	1.3	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.67	0.22	0.78	1.3	ug/kg	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	19	0.30	0.78	1.3	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	1.9	0.25	0.78	1.3	ug/kg			
PERFLUORONONANOIC ACID	375-95-1	0.65	0.22	0.78	1.3	ug/kg	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.91	0.34	0.78	1.3	ug/kg	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	180	2.7	7.8	13	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	2.0	0.34	0.78	1.3	ug/kg			
PERFLUOROPENTANOIC ACID	2706-90-3	0.98	0.23	0.78	1.3	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	0.24	0.14	0.52	1.3	ug/kg	J	J	
PERFLUOROTRIDECANOIC ACID	72629-94-8	0.17	0.16	0.52	1.3	ug/kg	J	J	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.78	0.23	0.78	1.3	ug/kg	U	U	

Sample Name BRLTN01-003-	SW-001	Matrix T	v pe: W		R	lesult Typ	e: TRG		
Lab Sample Name: EGG577	Sample	e Date/Time	: 2017	-04-18	13:10		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	1.3	0.032	0.10	0.20	ug/L			
2:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.10	0.036	0.10	0.20	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	2.0	0.048	0.10	0.20	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.43	0.066	0.4	0.20	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.10	0.046	0.10	0.20	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.10	0.040	0.10	0.20	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.10	0.028	0.10	0.20	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.50	0.033	0.10	0.20	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	14	0.34	1.0	2.0	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	2.7	0.029	0.10	0.20	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.097	0.046	0.10	0.20	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.069	0.036	0.10	0.20	ug/L	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	34	0.26	1.0	2.0	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	1.3	0.046	0.10	0.20	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.85	0.027	0.10	0.20	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.10	0.033	0.10	0.20	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.10	0.043	0.10	0.20	ug/L	U	U	

Sample Name BRLTN01-003-	SW-901	Matrix T	v pe: W		R	lesult Typ	e: TRG		
Lab Sample Name: EGG578	Sample	e Date/Time	2017	-04-18	13:10		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	1.4	0.032	0.10	0.20	ug/L			
:2 FLUOROTELOMER SULFONATE	39108-34-4	0.14	0.036	0.10	0.20	ug/L	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	1.9	0.048	0.10	0.20	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.47	0.066	0.14	0.20	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.10	0.046	0.10	0.20	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.10	0.040	0.10	0.20	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.10	0.028	0.10	0.20	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.52	0.033	0.10	0.20	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	16	0.34	1.0	2.0	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	3.6	0.029	0.10	0.20	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.083	0.046	0.10	0.20	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.086	0.036	0.10	0.20	ug/L	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	37	0.26	1.0	2.0	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	1.4	0.046	0.10	0.20	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.95	0.027	0.10	0.20	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.10	0.033	0.10	0.20	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.10	0.043	0.10	0.20	ug/L	U	U	

Analysis Method:	EPA 537 m	1							
Sample Name BRLTN01-MW	/102-011	Matrix T	ype: W		R	esult Typ	e: TRG		
Lab Sample Name: EGG583	Sample	e Date/Time	e: 2017-	04-18	16:45		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.19	0.0032	0.010	0.020	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	1.4	0.096	0.20	0.40	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.29	0.0066	0.014	0.020	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.28	0.0033	0.010	0.020	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	6.6	0.068	0.20	0.40	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	1.9	0.058	0.20	0.40	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.016	0.0046	0.010	0.020	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	4.2	0.052	0.20	0.40	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.55	0.0046	0.010	0.020	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.76	0.0027	0.010	0.020	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

M2032.0001

Sample Name BRLTN01-MW	103-009	Matrix T	v pe: W	r	R	esult Typ	e: TRG		
Lab Sample Name: EGG584	Sample	e Date/Time	: 2017	-04-18	17:52		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	0.80	0.032	0.10	0.20	ug/L			
2:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.10	0.036	0.10	0.20	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	1.7	0.048	0.10	0.20	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.38	0.066	0.14	0.20	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.10	0.046	0.10	0.20	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.10	0.040	0.10	0.20	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.10	0.028	0.10	0.20	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.45	0.033	0.10	0.20	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	12	0.34	1.0	2.0	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	2.5	0.029	0.10	0.20	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.046	0.046	0.10	0.20	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.10	0.036	0.10	0.20	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	18	0.26	1.0	2.0	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	1.4	0.046	0.10	0.20	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.85	0.027	0.10	0.20	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.10	0.033	0.10	0.20	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.10	0.043	0.10	0.20	ug/L	U	U	

Sample Name BRLTN01-MW	103-909	Matrix T	v pe: W		R	lesult Typ	e: TRG		
Lab Sample Name: EGG585	Sample	e Date/Time	: 2017	-04-18	17:52		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
5:2 FLUOROTELOMER SULFONATE	27619-97-2	0.69	0.032	0.10	0.20	ug/L			
3:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.10	0.036	0.10	0.20	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	1.7	0.048	0.10	0.20	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.33	0.066	0.14	0.20	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.10	0.046	0.10	0.20	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.10	0.040	0.10	0.20	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.10	0.028	0.10	0.20	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.44	0.033	0.10	0.20	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	12	0.34	1.0	2.0	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	2.3	0.029	0.10	0.20	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.056	0.046	0.10	0.20	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.10	0.036	0.10	0.20	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	20	0.26	1.0	2.0	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	1.4	0.046	0.10	0.20	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	1.0	0.027	0.10	0.20	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.10	0.033	0.10	0.20	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.10	0.043	0.10	0.20	ug/L	U	U	

Sample Name BRLTN01-TRE	NCHSUMP-00) Matrix T	ype: W	r	R	esult Typ	e: TRG		
Lab Sample Name: EGG587	Sample	e Date/Time	e: 2017	-04-19	11:30		Validati	on Level: Sta	age 4
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.10	0.032	0.10	0.20	ug/L	U	U	
:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.10	0.036	0.10	0.20	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.87	0.048	0.10	0.20	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.43	0.066	0.14	0.20	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.10	0.046	0.10	0.20	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.10	0.040	0.10	0.20	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.10	0.028	0.10	0.20	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.60	0.033	0.10	0.20	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	13	0.17	0.50	2.0	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	5.9	0.029	0.10	0.20	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.10	0.046	0.10	0.20	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.10	0.036	0.10	0.20	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	15	0.13	0.50	2.0	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	4.2	0.046	0.10	0.20	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	1.2	0.027	0.10	0.20	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.10	0.033	0.10	0.20	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.10	0.043	0.10	0.20	ug/L	U	U	

Sample Name BRLTN01-V1M	IW14L-008	Matrix Ty	v pe: W		Result Type: TRG					
Lab Sample Name: EGG588	Sampl	le Date/Time	: 2017	-04-19	13:21		Validati	on Level: Sta	age 2B	
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code	
:2 FLUOROTELOMER SULFONATE	27619-97-2	0.92	0.032	0.10	0.20	ug/L		J	07	
2:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.10	0.036	0.10	0.20	ug/L	U	UJ	07	
PERFLUOROBUTANE SULFONATE	29420-43-3	1.7	0.048	0.10	0.20	ug/L		J	07	
PERFLUOROBUTANOIC ACID	375-22-4	0.36	0.066	0.14	0.20	ug/L				
PERFLUORODECANE SULFONATE	335-77-3	< 0.10	0.046	0.10	0.20	ug/L	U	UJ	07	
PERFLUORODECANOIC ACID	335-76-2	< 0.10	0.040	0.10	0.20	ug/L	U	U		
PERFLUORODODECANOIC ACID	307-55-1	< 0.10	0.028	0.10	0.20	ug/L	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	0.50	0.033	0.10	0.20	ug/L				
PERFLUOROHEXANE SULFONATE	108427-53-8	13	0.17	0.50	1.0	ug/L				
PERFLUOROHEXANOIC ACID	307-24-4	2.4	0.029	0.10	0.20	ug/L				
PERFLUORONONANOIC ACID	375-95-1	< 0.10	0.046	0.10	0.20	ug/L	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.10	0.036	0.10	0.20	ug/L	U	UJ	07	
PERFLUOROOCTANE SULFONATE	1763-23-1	7.6	0.026	0.10	0.20	ug/L				
PERFLUOROOCTANOIC ACID	335-67-1	1.8	0.046	0.10	0.20	ug/L				
PERFLUOROPENTANOIC ACID	2706-90-3	1.0	0.027	0.10	0.20	ug/L				
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.10	0.038	0.10	0.20	ug/L	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.10	0.033	0.10	0.20	ug/L	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	0.064	0.043	0.10	0.20	ug/L	J	J		

Analysis Method:	EPA 537 n	1							
Sample Name BRLTN02-001-	-GW-027	Matrix T	vpe: W		R	esult Typ	e: TRG		
Lab Sample Name: EGG617	Sample	e Date/Time	2017-	-04-20 14:35			Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	1.4	0.032	0.10	0.20	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.18	0.0072	0.020	0.040	ug/L		J	07
PERFLUOROBUTANE SULFONATE	29420-43-3	0.25	0.0096	0.020	0.040	ug/L		J	07
PERFLUOROBUTANOIC ACID	375-22-4	0.15	0.013	0.028	0.040	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.020	0.0092	0.020	0.040	ug/L	U	UJ	07
PERFLUORODECANOIC ACID	335-76-2	< 0.020	0.0080	0.020	0.040	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.020	0.0056	0.020	0.040	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.20	0.0066	0.020	0.040	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	3.6	0.068	0.20	0.40	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.62	0.0058	0.020	0.040	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.028	0.0092	0.020	0.040	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.022	0.0072	0.020	0.040	ug/L	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	14	0.052	0.20	0.40	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.23	0.0092	0.020	0.040	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.41	0.0054	0.020	0.040	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.020	0.0076	0.020	0.040	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.020	0.0066	0.020	0.040	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.020	0.0086	0.020	0.040	ug/L	U	U	

Sample Name BRLTN02-001-	SO-020	Matrix T	pe: So	C	R	lesult Typ	e: TRG		
Lab Sample Name: EGG596	Sample	Date/Time	2017	-04-18	14:05		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
5:2 FLUOROTELOMER SULFONATE	27619-97-2	9.2	0.22	0.58	0.97	ug/kg			
3:2 FLUOROTELOMER SULFONATE	39108-34-4	0.86	0.31	0.58	0.97	ug/kg	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	<0.58	0.16	0.58	0.97	ug/kg	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	0.60	0.22	0.58	0.97	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.58	0.22	0.58	0.97	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	0.29	0.13	0.39	0.97	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	< 0.58	0.21	0.58	0.97	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.65	0.16	0.58	0.97	ug/kg	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	2.7	0.22	0.58	0.97	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.94	0.18	0.58	0.97	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	1.6	0.16	0.58	0.97	ug/kg			
PERFLUOROOCTANE SULFONAMIDE	754-91-6	15	0.25	0.58	0.97	ug/kg		J	07
PERFLUOROOCTANE SULFONATE	1763-23-1	160	2.0	5.8	9.7	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	1.7	0.25	0.58	0.97	ug/kg			
PERFLUOROPENTANOIC ACID	2706-90-3	1.1	0.17	0.58	0.97	ug/kg			
PERFLUOROTETRADECANOIC ACID	376-06-7	0.17	0.11	0.39	0.97	ug/kg	J	J	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.39	0.12	0.39	0.97	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.58	0.17	0.58	0.97	ug/kg	U	U	

Analysis Method:	EPA 537 m	1							
Sample Name BRLTN02-001-	SS-001	Matrix T	vpe: SC)	R	esult Typ	e: TRG		
Lab Sample Name: EGG594	Sample	e Date/Time	2017-	04-18	4-18 12:55		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.42	0.19	0.50	0.83	ug/kg	J	J	07
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.50	0.27	0.50	0.83	ug/kg	U	UJ	07
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.50	0.14	0.50	0.83	ug/kg	U	UJ	07
PERFLUOROBUTANOIC ACID	375-22-4	0.34	0.19	0.50	0.83	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.50	0.19	0.50	0.83	ug/kg	U	UJ	07
PERFLUORODECANOIC ACID	335-76-2	0.38	0.11	0.33	0.83	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	0.21	0.18	0.50	0.83	ug/kg	J	J	
PERFLUOROHEPTANOIC ACID	375-85-9	0.14	0.14	0.50	0.83	ug/kg	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	1.9	0.19	0.50	0.83	ug/kg		J	07;17
PERFLUOROHEXANOIC ACID	307-24-4	0.23	0.16	0.50	0.83	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	0.46	0.14	0.50	0.83	ug/kg	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	5.7	0.22	0.50	0.83	ug/kg		J	07
PERFLUOROOCTANE SULFONATE	1763-23-1	31	0.20	0.56	0.94	ug/kg		J	07;08B
PERFLUOROOCTANOIC ACID	335-67-1	0.53	0.22	0.50	0.83	ug/kg	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.50	0.15	0.50	0.83	ug/kg	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	0.13	0.091	0.33	0.83	ug/kg	J	J	
PERFLUOROTRIDECANOIC ACID	72629-94-8	0.16	0.10	0.33	0.83	ug/kg	J	J	
PERFLUOROUNDECANOIC ACID	2058-94-8	0.17	0.15	0.50	0.83	ug/kg	J	J	

M2032.0001

Sample Name BRLTN02-001-	SS-901	Matrix T	pe: SC)	R	esult Typ	e: TRG		
Lab Sample Name: EGG595	Sample	e Date/Time	2017	-04-18	12:55		Validati	on Level: Sta	age 4
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.53	0.20	0.53	0.88	ug/kg	U	U	
2:2 FLUOROTELOMER SULFONATE	39108-34-4	0.71	0.28	0.53	0.88	ug/kg	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.28	0.15	0.53	0.88	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.43	0.20	0.53	0.88	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	0.53	0.20	0.53	0.88	ug/kg	J	J	
PERFLUORODECANOIC ACID	335-76-2	0.45	0.11	0.35	0.88	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	< 0.53	0.19	0.53	0.88	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.16	0.15	0.53	0.88	ug/kg	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	3.2	0.20	0.53	0.88	ug/kg		J	17
PERFLUOROHEXANOIC ACID	307-24-4	0.25	0.17	0.53	0.88	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	0.47	0.15	0.53	0.88	ug/kg	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	5.1	0.23	0.53	0.88	ug/kg			
PERFLUOROOCTANE SULFONATE	1763-23-1	28	0.18	0.53	0.88	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	0.69	0.23	0.53	0.88	ug/kg	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	0.34	0.16	0.53	0.88	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	0.12	0.097	0.35	0.88	ug/kg	J	J	
PERFLUOROTRIDECANOIC ACID	72629-94-8	0.12	0.11	0.35	0.88	ug/kg	J	J	
PERFLUOROUNDECANOIC ACID	2058-94-8	0.27	0.16	0.53	0.88	ug/kg	J	J	

Sample Name BRLTN02-002-	SO-020	Matrix T	pe: So	C	R	esult Typ	e: TRG		
Lab Sample Name: EGG599	Sample	e Date/Time	2017	-04-18	15:30		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	1.2	0.25	0.66	1.1	ug/kg		В	06A
2:2 FLUOROTELOMER SULFONATE	39108-34-4	5.0	0.35	0.66	1.1	ug/kg			
PERFLUOROBUTANE SULFONATE	29420-43-3	<0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	<0.66	0.25	0.66	1.1	ug/kg	U	UJ	07
PERFLUORODECANE SULFONATE	335-77-3	<0.66	0.25	0.66	1.1	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	0.41	0.14	0.44	1.1	ug/kg	J	J	07
PERFLUORODODECANOIC ACID	307-55-1	<0.66	0.24	0.66	1.1	ug/kg	U	UJ	07
PERFLUOROHEPTANOIC ACID	375-85-9	0.27	0.19	0.66	1.1	ug/kg	J	J	07
PERFLUOROHEXANE SULFONATE	108427-53-8	2.4	0.25	0.66	1.1	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.65	0.21	0.66	1.1	ug/kg	J	J	07
PERFLUORONONANOIC ACID	375-95-1	0.51	0.19	0.66	1.1	ug/kg	J	J	07
PERFLUOROOCTANE SULFONAMIDE	754-91-6	36	0.29	0.66	1.1	ug/kg		J	07
PERFLUOROOCTANE SULFONATE	1763-23-1	160	2.3	6.6	11	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	0.52	0.29	0.66	1.1	ug/kg	J	J	07
PERFLUOROPENTANOIC ACID	2706-90-3	0.51	0.20	0.66	1.1	ug/kg	J	J	07
PERFLUOROTETRADECANOIC ACID	376-06-7	0.18	0.12	0.44	1.1	ug/kg	J	J	07
PERFLUOROTRIDECANOIC ACID	72629-94-8	0.16	0.13	0.44	1.1	ug/kg	J	J	07
PERFLUOROUNDECANOIC ACID	2058-94-8	<0.66	0.20	0.66	1.1	ug/kg	U	UJ	07

Sample Name BRLTN02-002-	SS-001	Matrix T	ype: So	C	R	lesult Typ	e: TRG		
Lab Sample Name: EGG597	Sample	e Date/Time	2017	-04-18	14:45		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	0.39	0.25	0.66	1.1	ug/kg	J	В	06A
2:2 FLUOROTELOMER SULFONATE	39108-34-4	0.47	0.35	0.66	1.1	ug/kg	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	<0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	0.98	0.25	0.66	1.1	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	0.77	0.25	0.66	1.1	ug/kg	J	J	
PERFLUORODECANOIC ACID	335-76-2	0.60	0.14	0.44	1.1	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	0.29	0.24	0.66	1.1	ug/kg	J	J	
PERFLUOROHEPTANOIC ACID	375-85-9	0.31	0.19	0.66	1.1	ug/kg	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	2.5	0.25	0.66	1.1	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.41	0.21	0.66	1.1	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	0.92	0.19	0.66	1.1	ug/kg	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	1.3	0.29	0.66	1.1	ug/kg		J	07
PERFLUOROOCTANE SULFONATE	1763-23-1	21	0.23	0.66	1.1	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	0.91	0.29	0.66	1.1	ug/kg	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	0.45	0.20	0.66	1.1	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	0.20	0.12	0.44	1.1	ug/kg	J	J	
PERFLUOROTRIDECANOIC ACID	72629-94-8	0.19	0.13	0.44	1.1	ug/kg	J	J	
PERFLUOROUNDECANOIC ACID	2058-94-8	0.60	0.20	0.66	1.1	ug/kg	J	J	

Sample Name BRLTN02-003-	SO-025	Matrix T	ype: SO)	R	esult Typ	e: TRG		
Lab Sample Name: EGG600	Sample	e Date/Time	2017	-04-18	17:05		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	18	0.20	0.52	0.87	ug/kg		J	07
:2 FLUOROTELOMER SULFONATE	39108-34-4	0.32	0.28	0.52	0.87	ug/kg	J	J	07
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.52	0.15	0.52	0.87	ug/kg	U	UJ	07
PERFLUOROBUTANOIC ACID	375-22-4	0.34	0.20	0.52	0.87	ug/kg	J	J	07
PERFLUORODECANE SULFONATE	335-77-3	< 0.52	0.20	0.52	0.87	ug/kg	U	UJ	07
PERFLUORODECANOIC ACID	335-76-2	0.21	0.11	0.35	0.87	ug/kg	J	J	07
PERFLUORODODECANOIC ACID	307-55-1	< 0.52	0.19	0.52	0.87	ug/kg	U	UJ	07
PERFLUOROHEPTANOIC ACID	375-85-9	1.1	0.15	0.52	0.87	ug/kg		J	07
PERFLUOROHEXANE SULFONATE	108427-53-8	9.1	0.20	0.52	0.87	ug/kg		J	07
PERFLUOROHEXANOIC ACID	307-24-4	0.40	0.17	0.52	0.87	ug/kg	J	J	07
PERFLUORONONANOIC ACID	375-95-1	0.48	0.15	0.52	0.87	ug/kg	J	J	07
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.48	0.23	0.52	0.87	ug/kg	J	J	07
PERFLUOROOCTANE SULFONATE	1763-23-1	20	0.18	0.52	0.87	ug/kg		J	07
PERFLUOROOCTANOIC ACID	335-67-1	7.8	0.23	0.52	0.87	ug/kg		J	07
PERFLUOROPENTANOIC ACID	2706-90-3	0.56	0.16	0.52	0.87	ug/kg	J	J	07
PERFLUOROTETRADECANOIC ACID	376-06-7	0.12	0.096	0.35	0.87	ug/kg	J	J	07
PERFLUOROTRIDECANOIC ACID	72629-94-8	0.15	0.10	0.35	0.87	ug/kg	J	J	07
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.52	0.16	0.52	0.87	ug/kg	U	UJ	07

Sample Name BRLTN02-003-	SS-001	Matrix T	pe: So	C	R	esult Typ	e: TRG		
Lab Sample Name: EGG598	Sample	e Date/Time	2017	-04-18	16:00		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	0.43	0.25	0.66	1.1	ug/kg	J	JB	06A;07
2:2 FLUOROTELOMER SULFONATE	39108-34-4	<0.66	0.35	0.66	1.1	ug/kg	U	UJ	07
PERFLUOROBUTANE SULFONATE	29420-43-3	<0.66	0.19	0.66	1.1	ug/kg	U	UJ	07
PERFLUOROBUTANOIC ACID	375-22-4	1.3	0.25	0.66	1.1	ug/kg		J	07
PERFLUORODECANE SULFONATE	335-77-3	< 0.66	0.25	0.66	1.1	ug/kg	U	UJ	07
PERFLUORODECANOIC ACID	335-76-2	0.67	0.14	0.44	1.1	ug/kg	J	J	07
PERFLUORODODECANOIC ACID	307-55-1	0.40	0.24	0.66	1.1	ug/kg	J	J	07
PERFLUOROHEPTANOIC ACID	375-85-9	0.41	0.19	0.66	1.1	ug/kg	J	J	07
PERFLUOROHEXANE SULFONATE	108427-53-8	1.3	0.25	0.66	1.1	ug/kg		J	07
PERFLUOROHEXANOIC ACID	307-24-4	0.38	0.21	0.66	1.1	ug/kg	J	J	07
PERFLUORONONANOIC ACID	375-95-1	0.58	0.19	0.66	1.1	ug/kg	J	J	07
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.89	0.29	0.66	1.1	ug/kg	J	J	07
PERFLUOROOCTANE SULFONATE	1763-23-1	5.6	0.23	0.66	1.1	ug/kg		J	07
PERFLUOROOCTANOIC ACID	335-67-1	0.70	0.29	0.66	1.1	ug/kg	J	J	07
PERFLUOROPENTANOIC ACID	2706-90-3	0.48	0.20	0.66	1.1	ug/kg	J	J	07
PERFLUOROTETRADECANOIC ACID	376-06-7	0.30	0.12	0.44	1.1	ug/kg	J	J	07
PERFLUOROTRIDECANOIC ACID	72629-94-8	0.26	0.13	0.44	1.1	ug/kg	J	J	07
PERFLUOROUNDECANOIC ACID	2058-94-8	0.48	0.20	0.66	1.1	ug/kg	J	J	07

Sample Name BRLTN02-004-	SD-001	Matrix Ty	pe: SI	Ξ	R	lesult Typ	e: TRG		
Lab Sample Name: EGG581	Sample	e Date/Time	: 2017	-04-18	15:00		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	0.48	0.28	0.72	1.2	ug/kg	J	В	06A
:2 FLUOROTELOMER SULFONATE	39108-34-4	0.40	0.38	0.72	1.2	ug/kg	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.72	0.20	0.72	1.2	ug/kg	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.72	0.28	0.72	1.2	ug/kg	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.72	0.28	0.72	1.2	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	0.43	0.16	0.48	1.2	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	0.40	0.26	0.72	1.2	ug/kg	J	J	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.72	0.20	0.72	1.2	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.72	0.28	0.72	1.2	ug/kg	U	U	
PERFLUOROHEXANOIC ACID	307-24-4	< 0.72	0.23	0.72	1.2	ug/kg	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.72	0.20	0.72	1.2	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.34	0.31	0.72	1.2	ug/kg	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	2.3	0.25	0.72	1.2	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	< 0.72	0.31	0.72	1.2	ug/kg	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.72	0.22	0.72	1.2	ug/kg	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	0.40	0.13	0.48	1.2	ug/kg	J	J	
PERFLUOROTRIDECANOIC ACID	72629-94-8	0.24	0.14	0.48	1.2	ug/kg	J	J	
PERFLUOROUNDECANOIC ACID	2058-94-8	0.27	0.22	0.72	1.2	ug/kg	J	J	

Analysis Method:	EPA 537 1	m							
Sample Name BRLTN02-	004-SW-001	Matrix Ty	pe: W		R	Result Typ	e: TRG		
Lab Sample Name: EGG58	2 Samp	ole Date/Time	: 2017-	04-18 14:54			Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONA	TE 27619-97-2	0.012	0.0032	0.010	0.020	ug/L	J	J	
8:2 FLUOROTELOMER SULFONA	TE 39108-34-4	0.0045	0.0036	0.010	0.020	ug/L	J	J	
PERFLUOROBUTANE SULFONAT	TE 29420-43-3	0.035	0.0048	0.010	0.020	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.046	0.0066	0.014	0.020	ug/L			
PERFLUORODECANE SULFONAT	TE 335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANE SULFONAT	ГЕ 108427-53-8	0.027	0.0034	0.010	0.020	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.032	0.0029	0.010	0.020	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAM	MIDE 754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAT	TE 1763-23-1	0.081	0.0026	0.010	0.020	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	0.012	0.0027	0.010	0.020	ug/L	J	J	
PERFLUOROTETRADECANOIC A	CID 376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Analysis Method:	EPA 537 n	n							
Sample Name BRLTN03-001-	-GW-022	Matrix T	ype: W	,	R	esult Typ	e: TRG		
Lab Sample Name: EGG616	Sampl	le Date/Time	2017	-04-20	13:03		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	2.7	0.032	0.10	0.20	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.065	0.036	0.10	0.20	ug/L	J	1	
PERFLUOROBUTANE SULFONATE	29420-43-3	2.5	0.048	0.10	0.20	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.57	0.066	0.14	0.20	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.10	0.046	0.10	0.20	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.10	0.040	0.10	0.20	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.10	0.028	0.10	0.20	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.58	0.033	0.10	0.20	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	43	0.17	0.50	1.0	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	3.4	0.029	0.10	0.20	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.11	0.046	0.10	0.20	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.10	0.036	0.10	0.20	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	60	0.26	1.0	2.0	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	2.0	0.046	0.10	0.20	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	1.0	0.027	0.10	0.20	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.10	0.033	0.10	0.20	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.10	0.043	0.10	0.20	ug/L	U	U	

M2032.0001

Thursday, October 19, 2017

D-76

Analysis Method:	EPA 537 m	1							
Sample Name BRLTN03-001-	SO-014	Matrix T	ype: SC)	R	esult Typ	e: TRG		
Lab Sample Name: EGG593	Sample	e Date/Time	2017	7-04-18 11:20			Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.84	0.20	0.53	0.88	ug/kg	J	В	06A
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.96	0.28	0.53	0.88	ug/kg			
PERFLUOROBUTANE SULFONATE	29420-43-3	0.37	0.15	0.53	0.88	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.53	0.20	0.53	0.88	ug/kg	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.53	0.20	0.53	0.88	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	0.23	0.11	0.35	0.88	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	< 0.53	0.19	0.53	0.88	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.46	0.15	0.53	0.88	ug/kg	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	25	0.20	0.53	0.88	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.26	0.17	0.53	0.88	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	0.51	0.15	0.53	0.88	ug/kg	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.53	0.23	0.53	0.88	ug/kg	U	UJ	07
PERFLUOROOCTANE SULFONATE	1763-23-1	140	1.8	5.3	8.8	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	1.0	0.23	0.53	0.88	ug/kg			
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.53	0.16	0.53	0.88	ug/kg	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	0.10	0.097	0.35	0.88	ug/kg	J	J	
PERFLUOROTRIDECANOIC ACID	72629-94-8	0.12	0.11	0.35	0.88	ug/kg	J	J	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.53	0.16	0.53	0.88	ug/kg	U	U	

Sample Name BRLTN03-001-	SS-001	Matrix T	ype: SO)	R	lesult Typ	e: TRG		
Lab Sample Name: EGG592	Sample	e Date/Time	2017	-04-18	10:37		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	0.37	0.21	0.55	0.92	ug/kg	J	В	06A
:2 FLUOROTELOMER SULFONATE	39108-34-4	1.1	0.29	0.55	0.92	ug/kg			
PERFLUOROBUTANE SULFONATE	29420-43-3	0.32	0.16	0.55	0.92	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.38	0.21	0.55	0.92	ug/kg	J	J	07
PERFLUORODECANE SULFONATE	335-77-3	7.6	0.21	0.55	0.92	ug/kg			
PERFLUORODECANOIC ACID	335-76-2	0.39	0.12	0.37	0.92	ug/kg	J	J	07
PERFLUORODODECANOIC ACID	307-55-1	0.33	0.20	0.55	0.92	ug/kg	J	J	07
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.55	0.16	0.55	0.92	ug/kg	U	UJ	07
PERFLUOROHEXANE SULFONATE	108427-53-8	15	0.21	0.55	0.92	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.46	0.17	0.55	0.92	ug/kg	J	J	07
PERFLUORONONANOIC ACID	375-95-1	0.98	0.16	0.55	0.92	ug/kg		J	07
PERFLUOROOCTANE SULFONAMIDE	754-91-6	14	0.24	0.55	0.92	ug/kg		J	07
PERFLUOROOCTANE SULFONATE	1763-23-1	280	1.9	5.5	9.2	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	1.5	0.24	0.55	0.92	ug/kg		J	07
PERFLUOROPENTANOIC ACID	2706-90-3	0.51	0.17	0.55	0.92	ug/kg	J	J	07
PERFLUOROTETRADECANOIC ACID	376-06-7	0.21	0.10	0.37	0.92	ug/kg	J	J	07
PERFLUOROTRIDECANOIC ACID	72629-94-8	0.23	0.11	0.37	0.92	ug/kg	J	J	07
PERFLUOROUNDECANOIC ACID	2058-94-8	0.67	0.17	0.55	0.92	ug/kg	J	J	07

Analysis Method:	EPA 537 n	1							
Sample Name BRLTN03-002-	-GW-022	Matrix T	ype: W		R	esult Typ	e: TRG		
Lab Sample Name: EGG615	Sampl	e Date/Time	e: 2017	-04-20	12:13		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	1.6	0.064	0.20	0.40	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.29	0.072	0.20	0.40	ug/L	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	1.8	0.096	0.20	0.40	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.52	0.13	0.28	0.40	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.20	0.092	0.20	0.40	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.20	0.080	0.20	0.40	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.20	0.056	0.20	0.40	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.36	0.066	0.20	0.40	ug/L	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	11	0.068	0.20	0.40	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	2.5	0.058	0.20	0.40	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.20	0.092	0.20	0.40	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.20	0.072	0.20	0.40	ug/L	U	UJ	07
PERFLUOROOCTANE SULFONATE	1763-23-1	66	0.26	1.0	2.0	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.97	0.092	0.20	0.40	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	1.0	0.054	0.20	0.40	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.20	0.076	0.20	0.40	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.20	0.066	0.20	0.40	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.20	0.086	0.20	0.40	ug/L	U	U	

Sample Name BRLTN03-002-	SO-015	Matrix T	ype: So)	R	esult Typ	e: TRG		
Lab Sample Name: EGG590	Sample	e Date/Time	2017	-04-18	09:45		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	1.6	0.23	0.60	1.0	ug/kg		В	06A
2:2 FLUOROTELOMER SULFONATE	39108-34-4	4.9	0.32	0.60	1.0	ug/kg			
PERFLUOROBUTANE SULFONATE	29420-43-3	0.49	0.17	0.60	1.0	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.39	0.23	0.60	1.0	ug/kg	J	J	07
PERFLUORODECANE SULFONATE	335-77-3	< 0.60	0.23	0.60	1.0	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	0.32	0.13	0.40	1.0	ug/kg	J	J	07
PERFLUORODODECANOIC ACID	307-55-1	< 0.60	0.22	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROHEPTANOIC ACID	375-85-9	0.20	0.17	0.60	1.0	ug/kg	J	J	07
PERFLUOROHEXANE SULFONATE	108427-53-8	5.2	0.23	0.60	1.0	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.50	0.19	0.60	1.0	ug/kg	J	J	07
PERFLUORONONANOIC ACID	375-95-1	0.50	0.17	0.60	1.0	ug/kg	J	J	07
PERFLUOROOCTANE SULFONAMIDE	754-91-6	<0.60	0.26	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROOCTANE SULFONATE	1763-23-1	110	2.1	6.0	10	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	0.54	0.26	0.60	1.0	ug/kg	J	J	07
PERFLUOROPENTANOIC ACID	2706-90-3	0.46	0.18	0.60	1.0	ug/kg	J	J	07
PERFLUOROTETRADECANOIC ACID	376-06-7	0.15	0.11	0.40	1.0	ug/kg	J	J	07
PERFLUOROTRIDECANOIC ACID	72629-94-8	0.16	0.12	0.40	1.0	ug/kg	J	J	07
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.60	0.18	0.60	1.0	ug/kg	U	UJ	07

Analysis Method:	EPA 537 m	1							
Sample Name BRLTN03-002-	SS-001	Matrix T	ype: SC)	R	Result Typ	e: TRG		
Lab Sample Name: EGG589	Sample	e Date/Time	e: 2017	-04-18	08:52		Validati	age 2B	
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.51	0.23	0.60	1.0	ug/kg	J	В	06A
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.75	0.32	0.60	1.0	ug/kg	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.71	0.17	0.60	1.0	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.68	0.23	0.60	1.0	ug/kg	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.60	0.23	0.60	1.0	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	0.82	0.13	0.40	1.0	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	0.56	0.22	0.60	1.0	ug/kg	J	J	
PERFLUOROHEPTANOIC ACID	375-85-9	0.31	0.17	0.60	1.0	ug/kg	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	7.5	0.23	0.60	1.0	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.30	0.19	0.60	1.0	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	0.90	0.17	0.60	1.0	ug/kg	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	3.2	0.26	0.60	1.0	ug/kg		J	07
PERFLUOROOCTANE SULFONATE	1763-23-1	170	2.1	6.0	10	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	0.92	0.26	0.60	1.0	ug/kg	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	0.57	0.18	0.60	1.0	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	0.25	0.11	0.40	1.0	ug/kg	J	J	
PERFLUOROTRIDECANOIC ACID	72629-94-8	0.30	0.12	0.40	1.0	ug/kg	J	J	
PERFLUOROUNDECANOIC ACID	2058-94-8	0.93	0.18	0.60	1.0	ug/kg	J	J	

M2032.0001

Sample Name BRLTN03-003-	SD-001	Matrix T	pe: SI	Ŧ	R	esult Typ	e: TRG		
Lab Sample Name: EGG579	Sample	e Date/Time	: 2017	-04-18	13:56		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
5:2 FLUOROTELOMER SULFONATE	27619-97-2	0.69	0.25	0.66	1.1	ug/kg	J	В	06A
3:2 FLUOROTELOMER SULFONATE	39108-34-4	0.66	0.35	0.66	1.1	ug/kg	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.43	0.19	0.66	1.1	ug/kg	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.66	0.25	0.66	1.1	ug/kg	U	U	
PERFLUORODECANE SULFONATE	335-77-3	1.6	0.25	0.66	1.1	ug/kg			
PERFLUORODECANOIC ACID	335-76-2	0.31	0.14	0.44	1.1	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	0.24	0.24	0.66	1.1	ug/kg	J	J	
PERFLUOROHEPTANOIC ACID	375-85-9	<0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	2.1	0.25	0.66	1.1	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.23	0.21	0.66	1.1	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	< 0.66	0.19	0.66	1.1	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	5.2	0.29	0.66	1.1	ug/kg			
PERFLUOROOCTANE SULFONATE	1763-23-1	63	2.3	6.6	11	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	< 0.66	0.29	0.66	1.1	ug/kg	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.66	0.20	0.66	1.1	ug/kg	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	0.17	0.12	0.44	1.1	ug/kg	J	J	
PERFLUOROTRIDECANOIC ACID	72629-94-8	0.16	0.13	0.44	1.1	ug/kg	J	J	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.66	0.20	0.66	1.1	ug/kg	U	U	

Sample Name BRLTN03-003-	SW-001	Matrix T	v pe: W		R	lesult Typ	e: TRG		
Lab Sample Name: EGG580	Sample	e Date/Time	2017	-04-18	13:56		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.10	0.032	0.10	0.20	ug/L	U	U	
:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.10	0.036	0.10	0.20	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.19	0.048	0.10	0.20	ug/L	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.083	0.066	0.14	0.20	ug/L	J	J	
PERFLUORODECANE SULFONATE	335-77-3	0.057	0.046	0.10	0.20	ug/L	J	J	
PERFLUORODECANOIC ACID	335-76-2	< 0.10	0.040	0.10	0.20	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.10	0.028	0.10	0.20	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.10	0.033	0.10	0.20	ug/L	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	0.99	0.034	0.10	0.20	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.22	0.029	0.10	0.20	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.10	0.046	0.10	0.20	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.15	0.036	0.10	0.20	ug/L	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	13	0.26	1.0	2.0	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.096	0.046	0.10	0.20	ug/L	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	0.11	0.027	0.10	0.20	ug/L	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.10	0.033	0.10	0.20	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.10	0.043	0.10	0.20	ug/L	U	U	

Sample Name BRLTN05-001-	-GW-017	Matrix Ty	vpe: W		R				
Lab Sample Name: EGG607	Sample	Date/Time	: 2017-	-04-19	11:15		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	0.017	0.0032	0.10	0.020	ug/L	J	JB	06A;07
:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	UJ	07
PERFLUOROBUTANE SULFONATE	29420-43-3	0.0062	0.0048	0.10	0.020	ug/L	J	J	07
PERFLUOROBUTANOIC ACID	375-22-4	0.015	0.0066	0.14	0.020	ug/L	J	J	07
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	UJ	07
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	UJ	07
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	UJ	07;10A
PERFLUOROHEPTANOIC ACID	375-85-9	0.0037	0.0033	0.10	0.020	ug/L	J	J	07
PERFLUOROHEXANE SULFONATE	108427-53-8	0.11	0.0034	0.10	0.020	ug/L		J	07
PERFLUOROHEXANOIC ACID	307-24-4	0.060	0.0029	0.10	0.020	ug/L		J	07
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0046	0.010	0.020	ug/L	U	UJ	07
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.92	0.0036	0.10	0.020	ug/L		J	07
PERFLUOROOCTANE SULFONATE	1763-23-1	0.24	0.0026	0.10	0.020	ug/L		J	07
PERFLUOROOCTANOIC ACID	335-67-1	0.054	0.0046	0.10	0.020	ug/L		J	07
PERFLUOROPENTANOIC ACID	2706-90-3	0.0076	0.0027	0.10	0.020	ug/L	J	J	07
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	UJ	07;10A
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	UJ	07;10A
PERFLUOROUNDECANOIC ACID	2058-94-8	0.0065	0.0043	0.10	0.020	ug/L	J	J	07

Sample Name BRLTN05-001-	SO-014	Matrix T	ype: SO)	R	lesult Typ	e: TRG		
Lab Sample Name: EGG606	Sample	Date/Time	2017	-04-19	11:00		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	0.30	0.23	0.60	1.0	ug/kg	J	JB	06A;07
:2 FLUOROTELOMER SULFONATE	39108-34-4	<0.60	0.32	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROBUTANE SULFONATE	29420-43-3	<0.60	0.17	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROBUTANOIC ACID	375-22-4	< 0.60	0.23	0.60	1.0	ug/kg	U	UJ	07
PERFLUORODECANE SULFONATE	335-77-3	< 0.60	0.23	0.60	1.0	ug/kg	U	UJ	07
PERFLUORODECANOIC ACID	335-76-2	0.27	0.13	0.40	1.0	ug/kg	J	J	07
PERFLUORODODECANOIC ACID	307-55-1	< 0.60	0.22	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.60	0.17	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.60	0.23	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROHEXANOIC ACID	307-24-4	< 0.60	0.19	0.60	1.0	ug/kg	U	UJ	07
PERFLUORONONANOIC ACID	375-95-1	< 0.60	0.17	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.27	0.26	0.60	1.0	ug/kg	J	J	07
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.60	0.21	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROOCTANOIC ACID	335-67-1	< 0.60	0.26	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROPENTANOIC ACID	2706-90-3	<0.60	0.18	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROTETRADECANOIC ACID	376-06-7	0.32	0.11	0.40	1.0	ug/kg	J	J	07
PERFLUOROTRIDECANOIC ACID	72629-94-8	<0.40	0.12	0.40	1.0	ug/kg	U	IJ	07
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.60	0.18	0.60	1.0	ug/kg	U	UJ	07

Analysis Method:	EPA 537 m	1							
Sample Name BRLTN05-001-S	SS-001	Matrix T	ype: SC)	R	esult Typ	e: TRG		
Lab Sample Name: EGG604	Sample	e Date/Time	2017-	-04-19	10:25		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.42	0.22	0.58	0.97	ug/kg	J	JB	06A;07
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.58	0.31	0.58	0.97	ug/kg	U	UJ	07
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.58	0.16	0.58	0.97	ug/kg	U	UJ	07
PERFLUOROBUTANOIC ACID	375-22-4	< 0.58	0.22	0.58	0.97	ug/kg	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.58	0.22	0.58	0.97	ug/kg	U	UJ	07
PERFLUORODECANOIC ACID	335-76-2	0.23	0.13	0.39	0.97	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	< 0.58	0.21	0.58	0.97	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.58	0.16	0.58	0.97	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.58	0.22	0.58	0.97	ug/kg	U	UJ	07
PERFLUOROHEXANOIC ACID	307-24-4	< 0.58	0.18	0.58	0.97	ug/kg	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.58	0.16	0.58	0.97	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.58	0.25	0.58	0.97	ug/kg	U	UJ	07
PERFLUOROOCTANE SULFONATE	1763-23-1	0.78	0.20	0.58	0.97	ug/kg	J	J	07
PERFLUOROOCTANOIC ACID	335-67-1	< 0.58	0.25	0.58	0.97	ug/kg	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.58	0.17	0.58	0.97	ug/kg	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	0.15	0.11	0.39	0.97	ug/kg	J	J	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.39	0.12	0.39	0.97	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.58	0.17	0.58	0.97	ug/kg	U	U	

M2032.0001

Sample Name BRLTN05-001-	SS-901	Matrix T	ype: So)	R	lesult Typ			
Lab Sample Name: EGG605	Sample	Date/Time	2017	-04-19	10:25		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
5:2 FLUOROTELOMER SULFONATE	27619-97-2	0.24	0.23	0.59	0.99	ug/kg	J	JB	06A;07
3:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.59	0.32	0.59	0.99	ug/kg	U	UJ	07
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.59	0.17	0.59	0.99	ug/kg	U	UJ	07
PERFLUOROBUTANOIC ACID	375-22-4	<0.59	0.23	0.59	0.99	ug/kg	U	UJ	07
PERFLUORODECANE SULFONATE	335-77-3	< 0.59	0.23	0.59	0.99	ug/kg	U	UJ	07
PERFLUORODECANOIC ACID	335-76-2	0.35	0.13	0.40	0.99	ug/kg	J	J	07
PERFLUORODODECANOIC ACID	307-55-1	< 0.59	0.22	0.59	0.99	ug/kg	U	UJ	07
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.59	0.17	0.59	0.99	ug/kg	U	UJ	07
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.59	0.23	0.59	0.99	ug/kg	U	UJ	07
PERFLUOROHEXANOIC ACID	307-24-4	< 0.59	0.19	0.59	0.99	ug/kg	U	UJ	07
PERFLUORONONANOIC ACID	375-95-1	< 0.59	0.17	0.59	0.99	ug/kg	U	UJ	07
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.58	0.26	0.59	0.99	ug/kg	J	J	07
PERFLUOROOCTANE SULFONATE	1763-23-1	0.97	0.21	0.59	0.99	ug/kg	J	J	07
PERFLUOROOCTANOIC ACID	335-67-1	< 0.59	0.26	0.59	0.99	ug/kg	U	UJ	07
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.59	0.18	0.59	0.99	ug/kg	U	UJ	07
PERFLUOROTETRADECANOIC ACID	376-06-7	0.19	0.11	0.40	0.99	ug/kg	J	J	07;10A
PERFLUOROTRIDECANOIC ACID	72629-94-8	0.15	0.12	0.40	0.99	ug/kg	J	J	07;10A
PERFLUOROUNDECANOIC ACID	2058-94-8	0.20	0.18	0.59	0.99	ug/kg	J	J	07

Analysis Method:	EPA 537 m	ı							
Sample Name BRLTN05-002-	GW-033	Matrix Ty	vpe: W		R	Result Typ	e: TRG		
Lab Sample Name: EGG613	Sample	e Date/Time	2017-	-04-19	16:55		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.016	0.0048	0.10	0.020	ug/L	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.026	0.0066	0.14	0.020	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	0.062	0.0034	0.10	0.020	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.036	0.0029	0.10	0.020	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.0062	0.0036	0.10	0.020	ug/L	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.011	0.0026	0.10	0.020	ug/L	J	J	
PERFLUOROOCTANOIC ACID	335-67-1	0.017	0.0046	0.10	0.020	ug/L	J	1	
PERFLUOROPENTANOIC ACID	2706-90-3	0.027	0.0027	0.10	0.020	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Sample Name BRLTN05-002-	GW-933	Matrix Ty	pe: W		Result Type: TRG					
Lab Sample Name: EGG614	Sample	e Date/Time	: 2017-	-04-19	16:55		Validati	on Level: Sta	age 2B	
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code	
:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	UJ	07	
:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	UJ	07	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.012	0.0048	0.10	0.020	ug/L	J	J	07	
PERFLUOROBUTANOIC ACID	375-22-4	0.026	0.0066	0.14	0.020	ug/L		J	07	
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	UJ	07	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	UJ	07	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	UJ	07	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	UJ	07	
PERFLUOROHEXANE SULFONATE	108427-53-8	0.055	0.0034	0.10	0.020	ug/L		J	07	
PERFLUOROHEXANOIC ACID	307-24-4	0.033	0.0029	0.10	0.020	ug/L		J	07	
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0046	0.010	0.020	ug/L	U	UJ	07	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.015	0.0036	0.10	0.020	ug/L	J	J	07	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.020	0.0026	0.10	0.020	ug/L		J	07	
PERFLUOROOCTANOIC ACID	335-67-1	0.021	0.0046	0.10	0.020	ug/L		J	07	
PERFLUOROPENTANOIC ACID	2706-90-3	0.022	0.0027	0.10	0.020	ug/L		J	07	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	UJ	07	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	UJ	07	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	UJ	07	

Sample Name BRLTN05-002-	SO-028	Matrix Ty	ype: So	C	R	esult Typ	e: TRG		
Lab Sample Name: EGG611	Sample	e Date/Time	2017	-04-19	16:25		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	0.57	0.23	0.60	1.0	ug/kg	J	J	07
:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.60	0.32	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.60	0.17	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROBUTANOIC ACID	375-22-4	<0.60	0.23	0.60	1.0	ug/kg	U	UJ	07
PERFLUORODECANE SULFONATE	335-77-3	<0.60	0.23	0.60	1.0	ug/kg	U	UJ	07
PERFLUORODECANOIC ACID	335-76-2	< 0.40	0.13	0.40	1.0	ug/kg	U	UJ	07
PERFLUORODODECANOIC ACID	307-55-1	< 0.60	0.22	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROHEPTANOIC ACID	375-85-9	<0.60	0.17	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROHEXANE SULFONATE	108427-53-8	<0.60	0.23	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROHEXANOIC ACID	307-24-4	< 0.60	0.19	0.60	1.0	ug/kg	U	UJ	07
PERFLUORONONANOIC ACID	375-95-1	< 0.60	0.17	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.60	0.26	0.60	1.0	ug/kg	U	UJ	07;10A
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.60	0.21	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROOCTANOIC ACID	335-67-1	< 0.60	0.26	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.60	0.18	0.60	1.0	ug/kg	U	IJ	07
PERFLUOROTETRADECANOIC ACID	376-06-7	0.11	0.11	0.40	1.0	ug/kg	J	JB	06A;07
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.40	0.12	0.40	1.0	ug/kg	U	UJ	07
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.60	0.18	0.60	1.0	ug/kg	U	UJ	07

Sample Name BRLTN05-002-	SO-928	Matrix Ty	ype: SO)	R	esult Typ	e: TRG		
Lab Sample Name: EGG612	Sample	e Date/Time	2017	-04-19	16:25		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	0.58	0.23	0.60	1.0	ug/kg	J	J	07
:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.60	0.32	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROBUTANE SULFONATE	29420-43-3	<0.60	0.17	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROBUTANOIC ACID	375-22-4	< 0.60	0.23	0.60	1.0	ug/kg	U	UJ	07
PERFLUORODECANE SULFONATE	335-77-3	< 0.60	0.23	0.60	1.0	ug/kg	U	UJ	07
PERFLUORODECANOIC ACID	335-76-2	< 0.40	0.13	0.40	1.0	ug/kg	U	UJ	07
PERFLUORODODECANOIC ACID	307-55-1	< 0.60	0.22	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.60	0.17	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.60	0.23	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROHEXANOIC ACID	307-24-4	< 0.60	0.19	0.60	1.0	ug/kg	U	UJ	07
PERFLUORONONANOIC ACID	375-95-1	< 0.60	0.17	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROOCTANE SULFONAMIDE	754-91-6	<0.60	0.26	0.60	1.0	ug/kg	U	UJ	07;10A
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.60	0.21	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROOCTANOIC ACID	335-67-1	<0.60	0.26	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROPENTANOIC ACID	2706-90-3	<0.60	0.18	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROTETRADECANOIC ACID	376-06-7	0.22	0.11	0.40	1.0	ug/kg	J	JB	06A;07
PERFLUOROTRIDECANOIC ACID	72629-94-8	<0.40	0.12	0.40	1.0	ug/kg	U	UJ	07
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.60	0.18	0.60	1.0	ug/kg	U	UJ	07

Analysis Method:	EPA 537 m	l							
Sample Name BRLTN05-002-S	SS-001	Matrix T	ype: SC)	R	esult Typ	e: TRG		
Lab Sample Name: EGG610	Sample	e Date/Time	2017-	-04-19	15:00		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.52	0.20	0.52	0.86	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.52	0.28	0.52	0.86	ug/kg	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.52	0.15	0.52	0.86	ug/kg	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.52	0.20	0.52	0.86	ug/kg	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.52	0.20	0.52	0.86	ug/kg	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.34	0.11	0.34	0.86	ug/kg	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.52	0.19	0.52	0.86	ug/kg	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.52	0.15	0.52	0.86	ug/kg	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.52	0.20	0.52	0.86	ug/kg	U	U	
PERFLUOROHEXANOIC ACID	307-24-4	< 0.52	0.16	0.52	0.86	ug/kg	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.52	0.15	0.52	0.86	ug/kg	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.52	0.22	0.52	0.86	ug/kg	U	UJ	07
PERFLUOROOCTANE SULFONATE	1763-23-1	1.2	0.18	0.52	0.86	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	< 0.52	0.22	0.52	0.86	ug/kg	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.52	0.15	0.52	0.86	ug/kg	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	0.17	0.095	0.34	0.86	ug/kg	J	В	06A
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.34	0.10	0.34	0.86	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.52	0.15	0.52	0.86	ug/kg	U	U	10A

Sample Name BRLTN05-003-	SO-032	Matrix T	ype: SO)	R	esult Typ	e: TRG		
Lab Sample Name: EGG609	Sample	e Date/Time	2017	-04-19	14:17		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	0.51	0.23	0.60	1.0	ug/kg	J	JB	06A;07
:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.60	0.32	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROBUTANE SULFONATE	29420-43-3	<0.60	0.17	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROBUTANOIC ACID	375-22-4	< 0.60	0.23	0.60	1.0	ug/kg	U	UJ	07
PERFLUORODECANE SULFONATE	335-77-3	< 0.60	0.23	0.60	1.0	ug/kg	U	UJ	07
PERFLUORODECANOIC ACID	335-76-2	0.30	0.13	0.40	1.0	ug/kg	J	J	07
PERFLUORODODECANOIC ACID	307-55-1	< 0.60	0.22	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.60	0.17	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.60	0.23	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROHEXANOIC ACID	307-24-4	< 0.60	0.19	0.60	1.0	ug/kg	U	UJ	07
PERFLUORONONANOIC ACID	375-95-1	<0.60	0.17	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROOCTANE SULFONAMIDE	754-91-6	<0.60	0.26	0.60	1.0	ug/kg	U	UJ	07;10A
PERFLUOROOCTANE SULFONATE	1763-23-1	<0.60	0.21	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROOCTANOIC ACID	335-67-1	<0.60	0.26	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.60	0.18	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROTETRADECANOIC ACID	376-06-7	0.19	0.11	0.40	1.0	ug/kg	J	J	07
PERFLUOROTRIDECANOIC ACID	72629-94-8	0.19	0.12	0.40	1.0	ug/kg	J	J	07
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.60	0.18	0.60	1.0	ug/kg	U	UJ	07

Analysis Method:	EPA 537 m	1							
Sample Name BRLTN05-003-	SS-001	Matrix T	ype: SC)	R	esult Typ	e: TRG		
Lab Sample Name: EGG608	Sample	e Date/Time	2017	-04-19	11:45		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.56	0.19	0.49	0.82	ug/kg	J	JB	06A;07
8:2 FLUOROTELOMER SULFONATE	39108-34-4	<0.49	0.26	0.49	0.82	ug/kg	U	UJ	07
PERFLUOROBUTANE SULFONATE	29420-43-3	<0.49	0.14	0.49	0.82	ug/kg	U	UJ	07
PERFLUOROBUTANOIC ACID	375-22-4	<0.49	0.19	0.49	0.82	ug/kg	U	UJ	07
PERFLUORODECANE SULFONATE	335-77-3	< 0.49	0.19	0.49	0.82	ug/kg	U	UJ	07
PERFLUORODECANOIC ACID	335-76-2	0.28	0.11	0.33	0.82	ug/kg	J	J	07
PERFLUORODODECANOIC ACID	307-55-1	< 0.49	0.18	0.49	0.82	ug/kg	U	UJ	07
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.49	0.14	0.49	0.82	ug/kg	U	UJ	07
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.49	0.19	0.49	0.82	ug/kg	U	UJ	07
PERFLUOROHEXANOIC ACID	307-24-4	< 0.49	0.16	0.49	0.82	ug/kg	U	UJ	07
PERFLUORONONANOIC ACID	375-95-1	<0.49	0.14	0.49	0.82	ug/kg	U	UJ	07
PERFLUOROOCTANE SULFONAMIDE	754-91-6	<0.49	0.21	0.49	0.82	ug/kg	U	UJ	07
PERFLUOROOCTANE SULFONATE	1763-23-1	2.7	0.17	0.49	0.82	ug/kg		J	07
PERFLUOROOCTANOIC ACID	335-67-1	<0.49	0.21	0.49	0.82	ug/kg	U	UJ	07
PERFLUOROPENTANOIC ACID	2706-90-3	<0.49	0.15	0.49	0.82	ug/kg	U	UJ	07
PERFLUOROTETRADECANOIC ACID	376-06-7	0.15	0.090	0.33	0.82	ug/kg	J	J	07
PERFLUOROTRIDECANOIC ACID	72629-94-8	0.10	0.098	0.33	0.82	ug/kg	J	J	07
PERFLUOROUNDECANOIC ACID	2058-94-8	<0.49	0.15	0.49	0.82	ug/kg	U	UJ	07

Analysis Method:	EPA 537 n	1							
Sample Name BRLTN-RS-00)1	Matrix Ty	pe: W		R	esult Typ	e: TRG		
Lab Sample Name: EGG574	Sampl	e Date/Time	: 2017-	2017-04-18			Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.014	0.0066	0.014	0.020	ug/L	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMID	E 754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Sample Name BRLTN-RS-002	2	Matrix Ty	pe: W		Result Type: TRG					
Lab Sample Name: EGG601	Sample	e Date/Time	: 2017-	-04-19	07:30		Validati	on Level: Sta	age 2B	
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code	
:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U		
2:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U		
PERFLUOROBUTANOIC ACID	375-22-4	< 0.014	0.0066	0.014	0.020	ug/L	U	U		
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U		
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U		
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U		
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U		
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U		
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U		
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U		
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U		
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U		

Sample Name BRLTN-SB-001	l	Matrix Ty	pe: W		Result Type: TRG					
Lab Sample Name: EGG591	Sample	Date/Time	: 2017-	-04-18	09:19		Validati	on Level: Sta	age 2B	
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code	
:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U		
2:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U		
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U		
PERFLUOROBUTANOIC ACID	375-22-4	< 0.014	0.0066	0.014	0.020	ug/L	U	U		
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U		
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U		
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U		
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U		
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U		
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U		
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U		
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U		
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U		

Validated Sample Result Forms: B780516

Sample Name BRLTN01-001-	SO-008	Matrix T	ype: SC)	F	Result Typ	e: TRG		
Lab Sample Name: EGH844	Sampl	e Date/Time	e: 2017	-04-20	14:05		Validati	on Level: St	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	<0.66	0.25	0.66	1.1	ug/kg	U	UJ	07
3:2 FLUOROTELOMER SULFONATE	39108-34-4	<0.66	0.35	0.66	1.1	ug/kg	U	UJ	07
PERFLUOROBUTANE SULFONATE	29420-43-3	<0.66	0.19	0.66	1.1	ug/kg	U	UJ	07
PERFLUOROBUTANOIC ACID	375-22-4	<0.66	0.25	0.66	1.1	ug/kg	U	UJ	07
PERFLUORODECANE SULFONATE	335-77-3	<0.66	0.25	0.66	1.1	ug/kg	U	UJ	07
PERFLUORODECANOIC ACID	335-76-2	<0.44	0.14	0.44	1.1	ug/kg	U	UJ	07
PERFLUORODODECANOIC ACID	307-55-1	<0.66	0.24	0.66	1.1	ug/kg	U	UJ	07
PERFLUOROHEPTANOIC ACID	375-85-9	<0.66	0.19	0.66	1.1	ug/kg	U	UJ	07
PERFLUOROHEXANE SULFONATE	108427-53-8	0.72	0.25	0.66	1.1	ug/kg	J	J	07
PERFLUOROHEXANOIC ACID	307-24-4	<0.66	0.21	0.66	1.1	ug/kg	U	UJ	07
PERFLUORONONANOIC ACID	375-95-1	<0.66	0.19	0.66	1.1	ug/kg	U	UJ	07
PERFLUOROOCTANE SULFONAMIDE	754-91-6	6.6	0.29	0.66	1.1	ug/kg		J	07
PERFLUOROOCTANE SULFONATE	1763-23-1	4.7	0.23	0.66	1.1	ug/kg		J	07
PERFLUOROOCTANOIC ACID	335-67-1	0.38	0.29	0.66	1.1	ug/kg	J	J	07
PERFLUOROPENTANOIC ACID	2706-90-3	<0.66	0.20	0.66	1.1	ug/kg	U	UJ	07
PERFLUOROTETRADECANOIC ACID	376-06-7	<0.44	0.12	0.44	1.1	ug/kg	U	UJ	07
PERFLUOROTRIDECANOIC ACID	72629-94-8	<0.44	0.13	0.44	1.1	ug/kg	U	UJ	07
PERFLUOROUNDECANOIC ACID	2058-94-8	<0.66	0.20	0.66	1.1	ug/kg	U	UJ	07

Analysis Method:	EPA 537 n	n							
Sample Name BRLTN01-MW	-BP3-012	Matrix T	ype: W		R	esult Typ	e: TRG		
Lab Sample Name: EGH846	Sampl	e Date/Time	2017	04-20 16:28			Validati	on Level: St	age 4
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.47	0.16	0.50	1.0	ug/L	J	J	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.50	0.18	0.50	1.0	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	3.4	0.24	0.50	1.0	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	2.7	0.33	0.70	1.0	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.50	0.23	0.50	1.0	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.50	0.20	0.50	1.0	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.50	0.14	0.50	1.0	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	11	0.17	0.50	1.0	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	96	3.4	10	20	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	41	0.15	0.50	1.0	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.50	0.23	0.50	1.0	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	3.1	0.18	0.50	1.0	ug/L			
PERFLUOROOCTANE SULFONATE	1763-23-1	31	0.13	0.50	1.0	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	41	0.23	0.50	1.0	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	5.8	0.14	0.50	1.0	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.50	0.19	0.50	1.0	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.50	0.17	0.50	1.0	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.50	0.22	0.50	1.0	ug/L	U	U	

Thursday, October 19, 2017

Sample Name BRLTN01-MW	-V1BP2-009	Matrix T	v pe: W		R				
Lab Sample Name: EGH845	Sampl	e Date/Time	: 2017	-04-20	17:05		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.10	0.032	0.10	0.20	ug/L	U	U	
:2 FLUOROTELOMER SULFONATE	39108-34-4	0.34	0.036	0.10	0.20	ug/L			
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.10	0.048	0.10	0.20	ug/L	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.14	0.066	0.14	0.20	ug/L	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.10	0.046	0.10	0.20	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.10	0.040	0.10	0.20	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.10	0.028	0.10	0.20	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.11	0.033	0.10	0.20	ug/L	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	2.6	0.034	0.10	0.20	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.37	0.029	0.10	0.20	ug/L			
ERFLUORONONANOIC ACID	375-95-1	0.059	0.046	0.10	0.20	ug/L	J	J	
ERFLUOROOCTANE SULFONAMIDE	754-91-6	0.081	0.036	0.10	0.20	ug/L	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	16	0.13	0.50	1.0	ug/L			
ERFLUOROOCTANOIC ACID	335-67-1	1.3	0.046	0.10	0.20	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.12	0.027	0.10	0.20	ug/L	J	J	
ERFLUOROTETRADECANOIC ACID	376-06-7	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.10	0.033	0.10	0.20	ug/L	U	U	
ERFLUOROUNDECANOIC ACID	2058-94-8	< 0.10	0.043	0.10	0.20	ug/L	U	U	

Page 3 of 21

Analysis Method:	EPA 537 n	n							
Sample Name BRLTN02-002	-GW-029	Matrix T	ype: W		R	Result Typ	e: TRG		
Lab Sample Name: EGH848	Sampl	e Date/Time	2017	-04-21	08:36		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	8.3	0.032	0.10	0.20	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.15	0.036	0.10	0.20	ug/L	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.47	0.048	0.10	0.20	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.46	0.066	0.14	0.20	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.10	0.046	0.10	0.20	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.10	0.040	0.10	0.20	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.10	0.028	0.10	0.20	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.29	0.033	0.10	0.20	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	5.5	0.034	0.10	0.20	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	2.0	0.029	0.10	0.20	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.10	0.046	0.10	0.20	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.16	0.036	0.10	0.20	ug/L	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	54	0.26	1.0	2.0	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.50	0.046	0.10	0.20	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	2.0	0.027	0.10	0.20	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.10	0.033	0.10	0.20	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.10	0.043	0.10	0.20	ug/L	U	U	

M2032.0001

Analysis Method:	EPA 537 n	1							
Sample Name BRLTN02-003-	-GW-032	Matrix T	ype: W		R	esult Typ	e: TRG		
Lab Sample Name: EGH847	Sample	e Date/Time	2017-	04-21	09:00		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.95	0.0064	0.020	0.040	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.15	0.0072	0.020	0.040	ug/L			
PERFLUOROBUTANE SULFONATE	29420-43-3	0.14	0.0096	0.020	0.040	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.17	0.013	0.028	0.040	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.020	0.0092	0.020	0.040	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.020	0.0080	0.020	0.040	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.020	0.0056	0.020	0.040	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.14	0.0066	0.020	0.040	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	2.5	0.068	0.20	0.40	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.57	0.0058	0.020	0.040	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.030	0.0092	0.020	0.040	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.13	0.0072	0.020	0.040	ug/L			
PERFLUOROOCTANE SULFONATE	1763-23-1	9.2	0.052	0.20	0.40	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.28	0.0092	0.020	0.040	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.48	0.0054	0.020	0.040	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.020	0.0076	0.020	0.040	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.020	0.0066	0.020	0.040	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.020	0.0086	0.020	0.040	ug/L	U	U	

M2032.0001

Thursday, October 19, 2017

Sample Name BRLTN04-001-	GW-013	Matrix Ty	pe: W		Result Type: TRG					
Lab Sample Name: EGH843	Sample	Date/Time	: 2017-	-04-20	13:12		Validati	on Level: Sta	age 2B	
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code	
:2 FLUOROTELOMER SULFONATE	27619-97-2	0.020	0.0032	0.010	0.020	ug/L		1	10A	
2:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	UJ	10A	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.013	0.0048	0.010	0.020	ug/L	J	J		
PERFLUOROBUTANOIC ACID	375-22-4	0.054	0.0066	0.014	0.020	ug/L				
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U		
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U		
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U		
PERFLUOROHEPTANOIC ACID	375-85-9	0.14	0.0033	0.010	0.020	ug/L				
PERFLUOROHEXANE SULFONATE	108427-53-8	1.7	0.017	0.050	0.10	ug/L				
PERFLUOROHEXANOIC ACID	307-24-4	0.058	0.0029	0.010	0.020	ug/L				
PERFLUORONONANOIC ACID	375-95-1	0.0051	0.0046	0.010	0.020	ug/L	J	J		
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.0053	0.0036	V	0.020	ug/L	J	J		
PERFLUOROOCTANE SULFONATE	1763-23-1	0.10	0.0026	0.010	0.020	ug/L				
PERFLUOROOCTANOIC ACID	335-67-1	0.084	0.0046	0.010	0.020	ug/L				
PERFLUOROPENTANOIC ACID	2706-90-3	0.060	0.0027	0.010	0.020	ug/L				
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U		
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U		
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U		

Sample Name BRLTN04-001-	SO-009	Matrix T	ype: SO)	R	esult Typ	e: TRG		
Lab Sample Name: EGH842	Sample	e Date/Time	2017	-04-20	13:00		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.66	0.25	0.66	1.1	ug/kg	U	UJ	07
:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.66	0.35	0.66	1.1	ug/kg	U	UJ	07
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.66	0.19	0.66	1.1	ug/kg	U	UJ	07
PERFLUOROBUTANOIC ACID	375-22-4	0.26	0.25	0.66	1.1	ug/kg	J	J	07
PERFLUORODECANE SULFONATE	335-77-3	< 0.66	0.25	0.66	1.1	ug/kg	U	UJ	07
PERFLUORODECANOIC ACID	335-76-2	< 0.44	0.14	0.44	1.1	ug/kg	U	UJ	07
PERFLUORODODECANOIC ACID	307-55-1	< 0.66	0.24	0.66	1.1	ug/kg	U	UJ	07
PERFLUOROHEPTANOIC ACID	375-85-9	0.37	0.19	0.66	1.1	ug/kg	J	J	07
PERFLUOROHEXANE SULFONATE	108427-53-8	1.2	0.25	0.66	1.1	ug/kg		J	07
PERFLUOROHEXANOIC ACID	307-24-4	0.36	0.21	0.66	1.1	ug/kg	J	J	07
PERFLUORONONANOIC ACID	375-95-1	< 0.66	0.19	0.66	1.1	ug/kg	U	UJ	07
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.66	0.29	0.66	1.1	ug/kg	U	UJ	07
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.66	0.23	0.66	1.1	ug/kg	U	UJ	07
PERFLUOROOCTANOIC ACID	335-67-1	< 0.66	0.29	0.66	1.1	ug/kg	U	UJ	07
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.66	0.20	0.66	1.1	ug/kg	U	UJ	07
PERFLUOROTETRADECANOIC ACID	376-06-7	<0.44	0.12	0.44	1.1	ug/kg	U	IJ	07
PERFLUOROTRIDECANOIC ACID	72629-94-8	<0.44	0.13	0.44	1.1	ug/kg	U	IJ	07
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.66	0.20	0.66	1.1	ug/kg	U	UJ	07

Sample Name BRLTN04-001-	SS-001	Matrix T	pe: So)	R	esult Typ	e: TRG		
Lab Sample Name: EGH841	Sample	e Date/Time	: 2017	-04-20	12:35		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.53	0.20	0.53	0.89	ug/kg	U	UJ	07
:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.53	0.28	0.53	0.89	ug/kg	U	UJ	07
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.53	0.15	0.53	0.89	ug/kg	U	UJ	07
PERFLUOROBUTANOIC ACID	375-22-4	< 0.53	0.20	0.53	0.89	ug/kg	U	UJ	07
PERFLUORODECANE SULFONATE	335-77-3	< 0.53	0.20	0.53	0.89	ug/kg	U	UJ	07
PERFLUORODECANOIC ACID	335-76-2	< 0.36	0.12	0.36	0.89	ug/kg	U	UJ	07
PERFLUORODODECANOIC ACID	307-55-1	< 0.53	0.20	0.53	0.89	ug/kg	U	UJ	07
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.53	0.15	0.53	0.89	ug/kg	U	UJ	07
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.53	0.20	0.53	0.89	ug/kg	U	UJ	07
PERFLUOROHEXANOIC ACID	307-24-4	< 0.53	0.17	0.53	0.89	ug/kg	U	UJ	07
PERFLUORONONANOIC ACID	375-95-1	< 0.53	0.15	0.53	0.89	ug/kg	U	UJ	07
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.53	0.23	0.53	0.89	ug/kg	U	UJ	07
PERFLUOROOCTANE SULFONATE	1763-23-1	4.3	0.19	0.53	0.89	ug/kg		J	07
PERFLUOROOCTANOIC ACID	335-67-1	< 0.53	0.23	0.53	0.89	ug/kg	U	UJ	07
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.53	0.16	0.53	0.89	ug/kg	U	UJ	07
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.36	0.098	0.36	0.89	ug/kg	U	IJ	07
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.36	0.11	0.36	0.89	ug/kg	U	UJ	07
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.53	0.16	0.53	0.89	ug/kg	U	UJ	07

Analysis Method:	EPA 537 n	ı							
Sample Name BRLTN04-002-	GW-018	Matrix T	vpe: W		R	Result Typ	e: TRG		
Lab Sample Name: EGH832	Sample	e Date/Time	2017-	-04-20	-20 09:10		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.0086	0.0032	0.010	0.020	ug/L	J	J	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.0052	0.0048	0.010	0.020	ug/L	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.016	0.0066	0.014	0.020	ug/L	J	J	
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.0034	0.0033	0.010	0.020	ug/L	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	0.027	0.0034	0.010	0.020	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.016	0.0029	0.010	0.020	ug/L	J	J	
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.0042	0.0036	0.010	0.020	ug/L	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.056	0.0026	0.010	0.020	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.0081	0.0046	0.010	0.020	ug/L	J	J	
PERFLUOROPENTANOIC ACID	2706-90-3	0.018	0.0027	0.010	0.020	ug/L	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Sample Name BRLTN04-002-	SO-010	Matrix T	ype: SO)	R	esult Typ	e: TRG		
Lab Sample Name: EGH831	Sample	e Date/Time	2017	-04-20	08:45		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
5:2 FLUOROTELOMER SULFONATE	27619-97-2	1.3	0.21	0.56	0.93	ug/kg			
3:2 FLUOROTELOMER SULFONATE	39108-34-4	6.3	0.30	0.56	0.93	ug/kg			
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.56	0.16	0.56	0.93	ug/kg	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.56	0.21	0.56	0.93	ug/kg	U	UJ	07
PERFLUORODECANE SULFONATE	335-77-3	0.98	0.21	0.56	0.93	ug/kg			
PERFLUORODECANOIC ACID	335-76-2	0.21	0.12	0.37	0.93	ug/kg	J	J	07
PERFLUORODODECANOIC ACID	307-55-1	< 0.56	0.20	0.56	0.93	ug/kg	U	UJ	07
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.56	0.16	0.56	0.93	ug/kg	U	UJ	07
PERFLUOROHEXANE SULFONATE	108427-53-8	4.1	0.21	0.56	0.93	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.52	0.18	0.56	0.93	ug/kg	J	J	07
PERFLUORONONANOIC ACID	375-95-1	0.39	0.16	0.56	0.93	ug/kg	J	J	07
PERFLUOROOCTANE SULFONAMIDE	754-91-6	2.7	0.24	0.56	0.93	ug/kg			
PERFLUOROOCTANE SULFONATE	1763-23-1	800	20	56	93	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	0.46	0.24	0.56	0.93	ug/kg	J	J	07
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.56	0.17	0.56	0.93	ug/kg	U	IJ	07
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.37	0.10	0.37	0.93	ug/kg	U	UJ	07
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.37	0.11	0.37	0.93	ug/kg	U	UJ	07
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.56	0.17	0.56	0.93	ug/kg	U	UJ	07

Sample Name BRLTN04-002-	SS-001	Matrix T	ype: SO	C	R	esult Typ	e: TRG		
Lab Sample Name: EGH830	Sampl	e Date/Time	2017	-04-20	08:20		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
5:2 FLUOROTELOMER SULFONATE	27619-97-2	<0.60	0.23	0.60	1.0	ug/kg	U	UJ	07
3:2 FLUOROTELOMER SULFONATE	39108-34-4	<0.60	0.32	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.60	0.17	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROBUTANOIC ACID	375-22-4	1.1	0.23	0.60	1.0	ug/kg		J	07
PERFLUORODECANE SULFONATE	335-77-3	10	0.23	0.60	1.0	ug/kg		J	07
PERFLUORODECANOIC ACID	335-76-2	0.31	0.13	0.40	1.0	ug/kg	J	J	07
PERFLUORODODECANOIC ACID	307-55-1	< 0.60	0.22	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROHEPTANOIC ACID	375-85-9	0.29	0.17	0.60	1.0	ug/kg	J	J	07
PERFLUOROHEXANE SULFONATE	108427-53-8	3.1	0.23	0.60	1.0	ug/kg		J	07
PERFLUOROHEXANOIC ACID	307-24-4	0.54	0.19	0.60	1.0	ug/kg	J	J	07
PERFLUORONONANOIC ACID	375-95-1	1.0	0.17	0.60	1.0	ug/kg		J	07
PERFLUOROOCTANE SULFONAMIDE	754-91-6	3.5	0.26	0.60	1.0	ug/kg		J	07
PERFLUOROOCTANE SULFONATE	1763-23-1	42	0.21	0.60	1.0	ug/kg		J	07
PERFLUOROOCTANOIC ACID	335-67-1	0.71	0.26	0.60	1.0	ug/kg	J	J	07
PERFLUOROPENTANOIC ACID	2706-90-3	1.1	0.18	0.60	1.0	ug/kg		J	07
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.40	0.11	0.40	1.0	ug/kg	U	UJ	07
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.40	0.12	0.40	1.0	ug/kg	U	UJ	07
PERFLUOROUNDECANOIC ACID	2058-94-8	0.63	0.18	0.60	1.0	ug/kg	J	J	07

Analysis Method:	EPA 537 n	n							
Sample Name BRLTN04-003	-GW-018	Matrix T	ype: W		R	Result Typ	e: TRG		
Lab Sample Name: EGH835	Sampl	e Date/Time	2017-	-04-20	10:20		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.042	0.0032	0.010	0.020	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.016	0.0048	0.010	0.020	ug/L	J	J	
PERFLUOROBUTANOIC ACID	375-22-4	0.030	0.0066	0.014	0.020	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.021	0.0033	0.010	0.020	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	0.17	0.0034	0.010	0.020	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.073	0.0029	0.010	0.020	ug/L			
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.0051	0.0036	0.010	0.020	ug/L	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.24	0.0026	0.010	0.020	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.023	0.0046	0.010	0.020	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.082	0.0027	0.010	0.020	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Thursday, October 19, 2017

Sample Name BRLTN04-003-	SO-011	Matrix T	ype: SO)	R	esult Typ	e: TRG		
Lab Sample Name: EGH834	Sample	e Date/Time	2017	-04-20	10:00		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.60	0.23	0.60	1.0	ug/kg	U	UJ	07
:2 FLUOROTELOMER SULFONATE	39108-34-4	2.7	0.32	0.60	1.0	ug/kg		J	07
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.60	0.17	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROBUTANOIC ACID	375-22-4	< 0.60	0.23	0.60	1.0	ug/kg	U	UJ	07
PERFLUORODECANE SULFONATE	335-77-3	<0.60	0.23	0.60	1.0	ug/kg	U	UJ	07
PERFLUORODECANOIC ACID	335-76-2	< 0.40	0.13	0.40	1.0	ug/kg	U	UJ	07
PERFLUORODODECANOIC ACID	307-55-1	< 0.60	0.22	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROHEPTANOIC ACID	375-85-9	<0.60	0.17	0.60	1.0	ug/kg	U	UJ	07
ERFLUOROHEXANE SULFONATE	108427-53-8	0.46	0.23	0.60	1.0	ug/kg	J	J	07
PERFLUOROHEXANOIC ACID	307-24-4	0.37	0.19	0.60	1.0	ug/kg	J	J	07
ERFLUORONONANOIC ACID	375-95-1	< 0.60	0.17	0.60	1.0	ug/kg	U	UJ	07
ERFLUOROOCTANE SULFONAMIDE	754-91-6	0.45	0.26	0.60	1.0	ug/kg	J	J	07
PERFLUOROOCTANE SULFONATE	1763-23-1	40	0.21	0.60	1.0	ug/kg		J	07
PERFLUOROOCTANOIC ACID	335-67-1	< 0.60	0.26	0.60	1.0	ug/kg	U	UJ	07
ERFLUOROPENTANOIC ACID	2706-90-3	< 0.60	0.18	0.60	1.0	ug/kg	U	IJ	07
ERFLUOROTETRADECANOIC ACID	376-06-7	< 0.40	0.11	0.40	1.0	ug/kg	U	IJ	07;10A
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.40	0.12	0.40	1.0	ug/kg	U	UJ	07;10A
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.60	0.18	0.60	1.0	ug/kg	U	UJ	07

Analysis Method:	EPA 537 m	1							
Sample Name BRLTN04-003-	SS-001	Matrix T	ype: SC)	R	Result Typ	e: TRG		
Lab Sample Name: EGH833	Sample	e Date/Time	2017-	-04-20 09:40			Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.60	0.23	0.60	1.0	ug/kg	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.54	0.32	0.60	1.0	ug/kg	J	J	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.60	0.17	0.60	1.0	ug/kg	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	1.2	0.23	0.60	1.0	ug/kg			
PERFLUORODECANE SULFONATE	335-77-3	13	0.23	0.60	1.0	ug/kg			
PERFLUORODECANOIC ACID	335-76-2	0.42	0.13	0.40	1.0	ug/kg	J	J	
PERFLUORODODECANOIC ACID	307-55-1	0.48	0.22	0.60	1.0	ug/kg	J	J	
PERFLUOROHEPTANOIC ACID	375-85-9	0.52	0.17	0.60	1.0	ug/kg	J	J	
PERFLUOROHEXANE SULFONATE	108427-53-8	4.4	0.23	0.60	1.0	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	0.57	0.19	0.60	1.0	ug/kg	J	J	
PERFLUORONONANOIC ACID	375-95-1	2.2	0.17	0.60	1.0	ug/kg			
PERFLUOROOCTANE SULFONAMIDE	754-91-6	2.5	0.26	0.60	1.0	ug/kg		J	07
PERFLUOROOCTANE SULFONATE	1763-23-1	36	0.21	0.60	1.0	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	1.8	0.26	0.60	1.0	ug/kg			
PERFLUOROPENTANOIC ACID	2706-90-3	0.70	0.18	0.60	1.0	ug/kg	J	J	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.40	0.11	0.40	1.0	ug/kg	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.40	0.12	0.40	1.0	ug/kg	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	0.83	0.18	0.60	1.0	ug/kg	J	J	

Sample Name BRLTN04-004-	GW-018	Matrix Ty	pe: W		R				
Lab Sample Name: EGH839	Sample	e Date/Time	: 2017-	-04-20	12:00		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier		Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	0.030	0.0032	0.010	0.020	ug/L			
2:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.039	0.0048	0.010	0.020	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.11	0.0066	0.014	0.020	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.033	0.0033	0.010	0.020	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	0.78	0.0034	0.010	0.020	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.23	0.0029	0.010	0.020	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.014	0.0046	0.010	0.020	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.0050	0.0036	0.010	0.020	ug/L	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.26	0.0026	0.010	0.020	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.061	0.0046	0.010	0.020	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.22	0.0027	0.010	0.020	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Analysis Method:	EPA 537 n	ı							
Sample Name BRLTN04-004-	GW-918	Matrix T	ype: W		R	esult Typ	e: TRG		
Lab Sample Name: EGH840	Sample	e Date/Time	2017-	04-20	12:00		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	0.025	0.0032	0.010	0.020	ug/L			
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	0.044	0.0048	0.010	0.020	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.11	0.0066	0.015	0.020	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.034	0.0033	0.010	0.020	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	0.93	0.0034	0.010	0.020	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	0.20	0.0029	0.010	0.020	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.016	0.0046	0.010	0.020	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.0043	0.0036	0.010	0.020	ug/L	J	J	
PERFLUOROOCTANE SULFONATE	1763-23-1	0.26	0.0026	0.010	0.020	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	0.062	0.0046	0.010	0.020	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.23	0.0027	0.010	0.020	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

Thursday, October 19, 2017

Sample Name BRLTN04-004-	SO-013	Matrix Ty	pe: SO	C	R	esult Typ	e: TRG		
Lab Sample Name: EGH838	Sample	e Date/Time	: 2017	-04-20	11:30		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.60	0.23	0.60	1.0	ug/kg	U	UJ	07
:2 FLUOROTELOMER SULFONATE	39108-34-4	0.45	0.32	0.60	1.0	ug/kg	J	J	07
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.60	0.17	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROBUTANOIC ACID	375-22-4	<0.60	0.23	0.60	1.0	ug/kg	U	UJ	07
PERFLUORODECANE SULFONATE	335-77-3	<0.60	0.23	0.60	1.0	ug/kg	U	UJ	07
PERFLUORODECANOIC ACID	335-76-2	< 0.40	0.13	0.40	1.0	ug/kg	U	UJ	07
PERFLUORODODECANOIC ACID	307-55-1	< 0.60	0.22	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROHEPTANOIC ACID	375-85-9	<0.60	0.17	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROHEXANE SULFONATE	108427-53-8	<0.60	0.23	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROHEXANOIC ACID	307-24-4	< 0.60	0.19	0.60	1.0	ug/kg	U	UJ	07
PERFLUORONONANOIC ACID	375-95-1	< 0.60	0.17	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.60	0.26	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROOCTANE SULFONATE	1763-23-1	6.0	0.21	0.60	1.0	ug/kg		J	07
PERFLUOROOCTANOIC ACID	335-67-1	< 0.60	0.26	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.60	0.18	0.60	1.0	ug/kg	U	UJ	07
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.40	0.11	0.40	1.0	ug/kg	U	IJ	07
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.40	0.12	0.40	1.0	ug/kg	U	UJ	07
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.60	0.18	0.60	1.0	ug/kg	U	UJ	07

Sample Name BRLTN04-004-	SS-001	Matrix T	ype: So	C	R	esult Typ	e: TRG		
Lab Sample Name: EGH836	Sampl	e Date/Time	2017	-04-20	11:00		Validati	on Level: Sta	age 4
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
5:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.53	0.20	0.53	0.88	ug/kg	U	UJ	07
3:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.53	0.28	0.53	0.88	ug/kg	U	UJ	07
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.53	0.15	0.53	0.88	ug/kg	U	UJ	07
PERFLUOROBUTANOIC ACID	375-22-4	0.64	0.20	0.53	0.88	ug/kg	J	J	07
PERFLUORODECANE SULFONATE	335-77-3	0.57	0.20	0.53	0.88	ug/kg	J	J	07
PERFLUORODECANOIC ACID	335-76-2	0.34	0.11	0.53	0.88	ug/kg	J	J	07
PERFLUORODODECANOIC ACID	307-55-1	< 0.53	0.19	0.53	0.88	ug/kg	U	UJ	07
PERFLUOROHEPTANOIC ACID	375-85-9	0.36	0.15	0.53	0.88	ug/kg	J	J	07
PERFLUOROHEXANE SULFONATE	108427-53-8	0.63	0.20	0.53	0.88	ug/kg	J	J	07
PERFLUOROHEXANOIC ACID	307-24-4	0.30	0.17	0.53	0.88	ug/kg	J	J	07
PERFLUORONONANOIC ACID	375-95-1	1.6	0.15	0.53	0.88	ug/kg		J	07
PERFLUOROOCTANE SULFONAMIDE	754-91-6	< 0.53	0.23	0.53	0.88	ug/kg	U	UJ	07
PERFLUOROOCTANE SULFONATE	1763-23-1	18	0.18	0.53	0.88	ug/kg		J	07
PERFLUOROOCTANOIC ACID	335-67-1	0.94	0.23	0.53	0.88	ug/kg		J	07
PERFLUOROPENTANOIC ACID	2706-90-3	0.35	0.16	0.53	0.88	ug/kg	J	J	07
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.35	0.097	0.35	0.88	ug/kg	U	UJ	07;10A
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.35	0.11	0.35	0.88	ug/kg	U	IJ	07;10A
PERFLUOROUNDECANOIC ACID	2058-94-8	0.44	0.16	0.53	0.88	ug/kg	J	J	07

Analysis Method:	EPA 537 n	1							
Sample Name BRLTN-RS-00	03	Matrix Ty	pe: W		R	esult Typ	e: TRG		
Lab Sample Name: EGH837	Sampl	e Date/Time	: 2017-	-04-20	11:10		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	< 0.010	0.0032	0.010	0.020	ug/L	U	U	
8:2 FLUOROTELOMER SULFONATE	39108-34-4	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.010	0.0048	0.010	0.020	ug/L	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	< 0.014	0.0066	0.014	0.020	ug/L	U	U	
PERFLUORODECANE SULFONATE	335-77-3	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.010	0.0040	0.010	0.020	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.010	0.0028	0.010	0.020	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANE SULFONATE	108427-53-8	< 0.010	0.0034	0.010	0.020	ug/L	U	U	
PERFLUOROHEXANOIC ACID	307-24-4	< 0.010	0.0029	0.010	0.020	ug/L	U	U	
PERFLUORONONANOIC ACID	375-95-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONAMID	E 754-91-6	< 0.010	0.0036	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANE SULFONATE	1763-23-1	< 0.010	0.0026	0.010	0.020	ug/L	U	U	
PERFLUOROOCTANOIC ACID	335-67-1	< 0.010	0.0046	0.010	0.020	ug/L	U	U	
PERFLUOROPENTANOIC ACID	2706-90-3	< 0.010	0.0027	0.010	0.020	ug/L	U	U	
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.010	0.0038	0.010	0.020	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.010	0.0033	0.010	0.020	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.010	0.0043	0.010	0.020	ug/L	U	U	

M2032.0001

Thursday, October 19, 2017

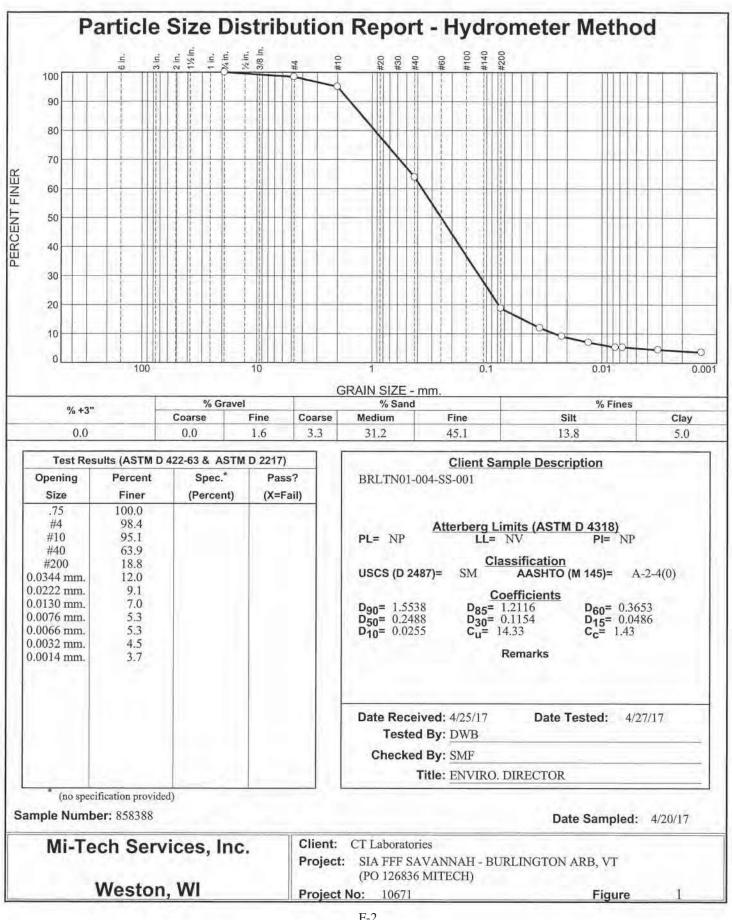
Sample Name BRLTN-WS-00	1	Matrix T	ype: So)	R	lesult Typ	e: TRG		
Lab Sample Name: EGH850	Sample	e Date/Time	2017	-04-21	12:20		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
:2 FLUOROTELOMER SULFONATE	27619-97-2	0.27	0.21	0.55	0.92	ug/kg	J	J	
2:2 FLUOROTELOMER SULFONATE	39108-34-4	1.7	0.29	0.55	0.92	ug/kg			
PERFLUOROBUTANE SULFONATE	29420-43-3	< 0.55	0.16	0.55	0.92	ug/kg	U	U	
PERFLUOROBUTANOIC ACID	375-22-4	0.51	0.21	0.55	0.92	ug/kg	J	J	07
PERFLUORODECANE SULFONATE	335-77-3	1.1	0.21	0.55	0.92	ug/kg			
PERFLUORODECANOIC ACID	335-76-2	0.32	0.12	0.37	0.92	ug/kg	J	J	07
PERFLUORODODECANOIC ACID	307-55-1	< 0.55	0.20	0.55	0.92	ug/kg	U	UJ	07
PERFLUOROHEPTANOIC ACID	375-85-9	0.51	0.16	0.55	0.92	ug/kg	J	J	07
PERFLUOROHEXANE SULFONATE	108427-53-8	19	0.21	0.55	0.92	ug/kg			
PERFLUOROHEXANOIC ACID	307-24-4	3.7	0.17	0.55	0.92	ug/kg		J	07
PERFLUORONONANOIC ACID	375-95-1	0.60	0.16	0.55	0.92	ug/kg	J	J	07
PERFLUOROOCTANE SULFONAMIDE	754-91-6	77	2.4	5.5	9.2	ug/kg			
PERFLUOROOCTANE SULFONATE	1763-23-1	220	1.9	5.5	9.2	ug/kg			
PERFLUOROOCTANOIC ACID	335-67-1	6.3	0.24	0.55	0.92	ug/kg		J	07
PERFLUOROPENTANOIC ACID	2706-90-3	0.52	0.17	0.55	0.92	ug/kg	J	J	07
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.37	0.10	0.37	0.92	ug/kg	U	UJ	07
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.37	0.11	0.37	0.92	ug/kg	U	UJ	07
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.55	0.17	0.55	0.92	ug/kg	U	UJ	07

Analysis Method:	EPA 537 m	l							
Sample Name BRLTN-WW-00	01	Matrix T	ype: W		R	esult Typ	e: TRG		
Lab Sample Name: EGH849	Sample	Date/Time	2017	-04-21	12:15		Validati	on Level: Sta	age 2B
Analyte	CAS No	Result Value	DL	LOD	LOQ	Result Units	Lab Qualifier	Validation Qualifier	Validation Reason Code
6:2 FLUOROTELOMER SULFONATE	27619-97-2	1.3	0.032	0.10	0.20	ug/L		J	10A
8:2 FLUOROTELOMER SULFONATE	39108-34-4	0.072	0.036	0.10	0.20	ug/L	J	J	10A
PERFLUOROBUTANE SULFONATE	29420-43-3	0.83	0.048	0.10	0.20	ug/L			
PERFLUOROBUTANOIC ACID	375-22-4	0.24	0.066	0.14	0.20	ug/L			
PERFLUORODECANE SULFONATE	335-77-3	< 0.10	0.046	0.10	0.20	ug/L	U	U	
PERFLUORODECANOIC ACID	335-76-2	< 0.10	0.040	0.10	0.20	ug/L	U	U	
PERFLUORODODECANOIC ACID	307-55-1	< 0.10	0.028	0.10	0.20	ug/L	U	U	
PERFLUOROHEPTANOIC ACID	375-85-9	0.38	0.033	0.10	0.20	ug/L			
PERFLUOROHEXANE SULFONATE	108427-53-8	9.3	0.034	0.10	0.20	ug/L			
PERFLUOROHEXANOIC ACID	307-24-4	1.8	0.029	0.10	0.20	ug/L			
PERFLUORONONANOIC ACID	375-95-1	0.047	0.046	0.10	0.20	ug/L	J	J	
PERFLUOROOCTANE SULFONAMIDE	754-91-6	0.60	0.036	0.10	0.20	ug/L			
PERFLUOROOCTANE SULFONATE	1763-23-1	21	0.13	0.50	1.0	ug/L			
PERFLUOROOCTANOIC ACID	335-67-1	1.4	0.046	0.10	0.20	ug/L			
PERFLUOROPENTANOIC ACID	2706-90-3	0.69	0.027	0.10	0.20	ug/L			
PERFLUOROTETRADECANOIC ACID	376-06-7	< 0.10	0.038	0.10	0.20	ug/L	U	U	
PERFLUOROTRIDECANOIC ACID	72629-94-8	< 0.10	0.033	0.10	0.20	ug/L	U	U	
PERFLUOROUNDECANOIC ACID	2058-94-8	< 0.10	0.043	0.10	0.20	ug/L	U	U	

Appendix E

Investigation-Derived Waste Manifests

(Manifests will be provided after waste disposal.)


Appendix F Soil Physiochemical Analytical Results

		Percent Passing	Percent Passing	USCS	TOC		Percent
AFFF Area	Sample Number	No. 4 Screen	No. 200 Screen	Classification	(mg/kg)	pН	Solids
AFFF Area 1	BRLTN01-004-SS-001	98.4	18.8	SM	15.000	7.03	81.3
Former F1A 1 (IRP Site 1)	BRLTN01-004-SO-008	95.5	9.7	SP-SM	1,030	6.98	86.7
AFFF Area 2 Duilding 00	BRLTN02-005-SS-001	92.6	20.7	SM	25,600	7.17	65.5
Former Fire Station	BRLTN02-005-SO-032	100.0	25.0	SM	331	7.49	88.1
AFFF Area 3	BRLTN03-004-SS-001	95.4	18.3	SM	2,940	7.26	91.9
Current Fire Station	BRLTN03-004-SO-016	100.0	4.3	SP	316	7.48	86.2
AFFF Area 4	BRLTN04-005-SS-001	100.0	21.5	SM	5,160	7.44	81.4
Fire Department Equipment Testing Area	BRLTN04-005-SO-012	100.0	23.1	SM	484	7.67	89.0
AFFF Area 5	BRLTN05-004-SS-001	100.0	19.1	SM	983	7.29	75.5
r-10 Emergency Response Site	BRLTN05-004-SO-024	97.1	28.9	SM	434	7.48	85.4
AFFF = aqueous film forming foam	òam		BRLTN = Burlingt	BRLTN = Burlington Air National Guard Base	l Base		
FTA = fire training area			IRP = Installation F	IRP = Installation Restoration Program			
mg/kg = milligrams per kilogram	m		pH = potential of hydrogen	/drogen			

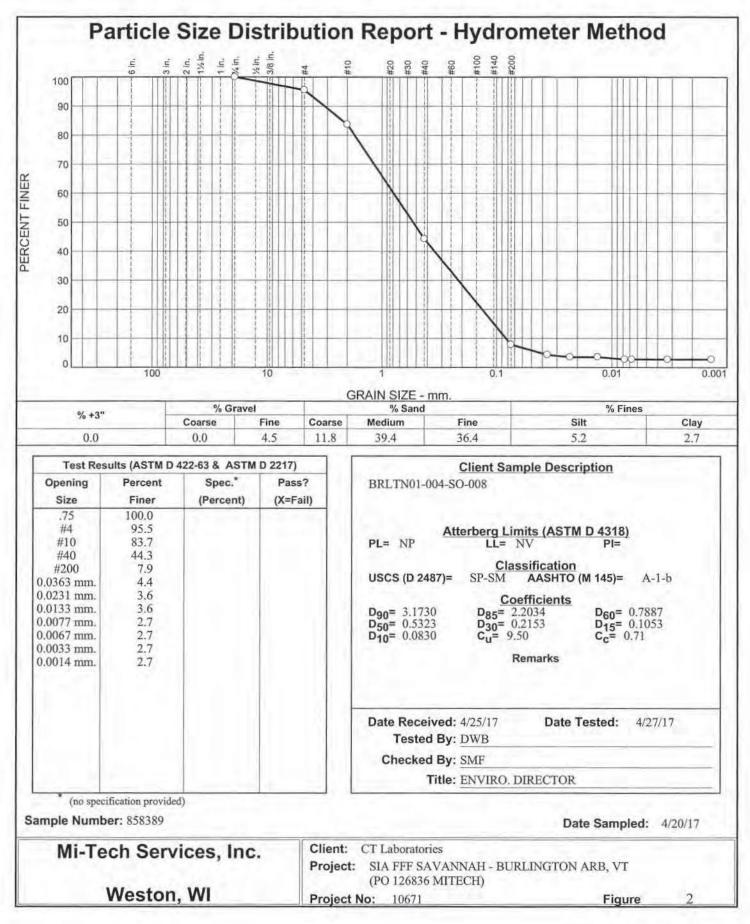
Summary
Analyses
hemical
Physioc
F-1 Soil
Table I

SM = silty sand SP-SM = poorly graded silty sand USCS = Unified Soil Classification System

SP = poorly graded sand TOC = total organic carbon

tvering more than data	from your environmental analyse	545		_	Sa	mple Descript	tion	
	IN	ORGANIC ANALYSIS DAT	TA SHEET		BRLTN	01-004-SS-00	1	
Lab Name:	CT Laboratories	Co	ntract: MAXXAM	ANALYTIC	S-SIA FFF	SAVANNAH		
Matrix (soil/water):	SOIL	SD	G No.:	126836	5			
% Solids:	81.3	Lal	Lab Sample ID:	858388				
nalytical Method:	L-Kahn/9060A	Da	te Received:	04/22/2	2017	_		
ilution Factor:	1.00	тс	LP/SPLP Extraction	n Date/ti	me:		_	
nalytical Run #:	137280	An	alysis Date/Time	04/3	28/2017	12:20	-	
nalytical Prep Batch #	ŧ.	Pre	ep. Date/Time:					
CAL Calibration #:	INSTRUMENT =	Co	ncentration Units:	mg	/kg			
CAS #	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL	
тос т	otal Organic Carbon	15000		44	92	180	180	

Sample Description


1	
INORGANIC ANALYSIS DATA S	HEET

BRLTN01-004-SS-001

Lab Name:	CT Laboratories	C	ontract: MAXXAM	ANALYTIC	S-SIA FFF	SAVANNAH				
Matrix (soil/water):	SOIL	S	DG No.:	126836						
% Solids:	81.3	L	ab Sample ID:	858388	3					
Analytical Method:	EPA 9045D	D	ate Received:	04/22/2	2017					
Dilution Factor:	1	т	CLP/SPLP Extractio	n Date/ti	me:					
Analytical Run #:	137341	A	nalysis Date/Time	04/	28/2017	13:15				
Analytical Prep Batch	h #:	P	rep. Date/Time:							
ICAL Calibration #:		c	oncentration Units:	S.U	l.					
CAS #	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL			
PH	pН	7.03		0.1	0.1	0.1	0.1			

11

					mple Descrip			
	INOF	RGANIC ANALYSIS DATA SHEET				12		
ab Name:	CT Laboratories	Contract: MAXX/	AM ANALYTIC	S-SIA FFF	SAVANNAH			
Vatrix (soil/water):	SOIL	SDG No.:	126830	6				
% Solids:	81.3	Lab Sample ID:	858388	858388 04/22/2017 ion Date/time:				
nalytical Method:	EPA 8000C	Date Received:	04/22/					
ilution Factor.	1.00	TCLP/SPLP Extra	ction Date/ti					
nalytical Run #:	137160	Analysis Date/Tim	ne 04/.	25/2017	08:00			
nalytical Prep Bate	ch #.	Prep. Date/Time:						
CAL Calibration #:		Concentration Uni	its: %					
CAS #	Analyte	Concentration Qualifiers	DL	LOD	LOQ	RL		
SOLID	Solids, Percent	81.3	0.1	0.1	0.1	0.1		

Sample Description

1 INORGANIC ANALYSIS DATA SHEET

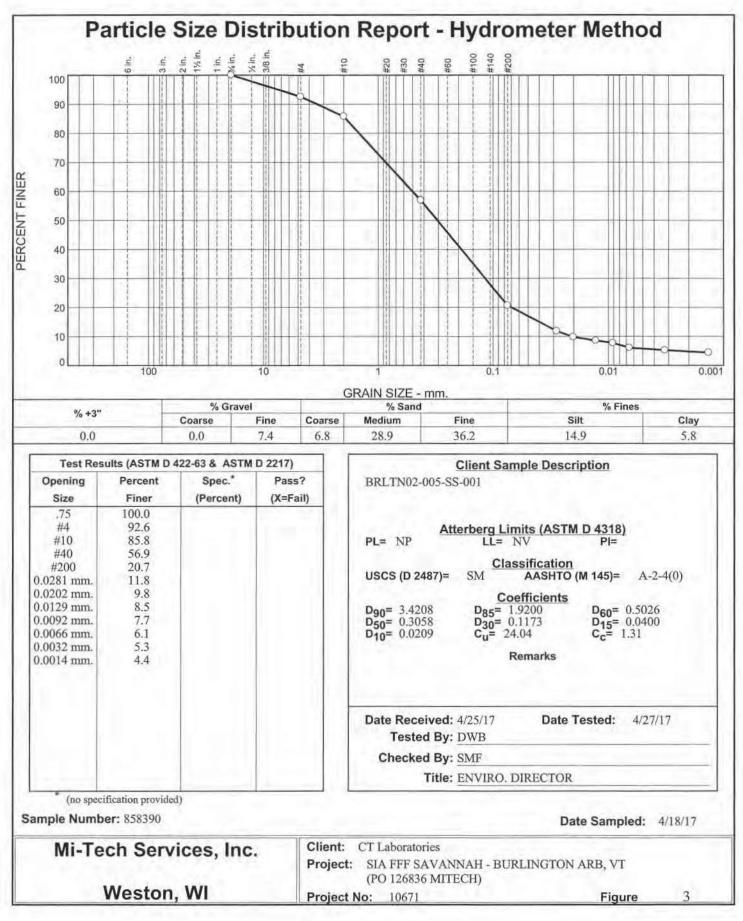
BRLTN01-004-SO-008

Lab Name:	CT Laboratories		Contract: MAXXAM	ANALYTIC	S-SIA FFF	SAVANNAH	
Matrix (soil/water):	SOIL		SDG No .:	126836	5		_
% Solids:	86.7		Lab Sample ID:	858389	9		
Analytical Method:	L-Kahn/9060A		Date Received:	04/22/2	2017	_	
Dilution Factor:	1.00		TCLP/SPLP Extractio	n Date/ti	me:		
Analytical Run #:	137280		Analysis Date/Time	04/2	28/2017	13:34	
Analytical Prep Batch #:			Prep. Date/Time:				
ICAL Calibration #:	INSTRUMENT =		Concentration Units:	mg/	ſkg		
CAS #	Analyte	Concentratio	n Qualifiers	DL	LOD	LOQ	RL
TOC Tot	al Organic Carbon	1030		42	87	170	170

Sample Description

1 INORGANIC ANALYSIS DATA SHEET

BRLTN01-004-SO-008


Lab Name:	CT Laboratories		Contract: MAXXAM A	ANALYTIC	S-SIA FFF	SAVANNAH	-
Matrix (soil/water):	SOIL		SDG No.:	126836	6	_	
% Solids:	86.7		Lab Sample ID:	858389)		_
Analytical Method:	EPA 9045D		Date Received:	04/22/2	2017		
Dilution Factor:	1		TCLP/SPLP Extractio	n Date/ti	me: _		_
Analytical Run #:	137341		Analysis Date/Time	04/2	28/2017	13:15	-
Analytical Prep Batch #:			Prep. Date/Time:				
ICAL Calibration #:			Concentration Units:	S.U	L.	and an other	_
CAS #	Analyte	Concentratio	n Qualifiers	DL	LOD	LOQ	RL
PH pH		6.98	1	0.1	0.1	0.1	0.1

Sample Description

1
INORGANIC ANALYSIS DATA SHEET

BRLTN01-004-SO-008

Lab Name:	CT Laboratories		Contract:	MAXXAM	NALYTIC	S-SIA FFF	SAVANNAH	
Matrix (soil/water):	SOIL		SDG No.;		126836	3		
% Solids:	86.7		Lab Samp	le ID:	858389	1		
Analytical Method:	EPA 8000C		Date Rece	ived:	04/22/2	2017		
Dilution Factor:	1.00		TCLP/SPL	P Extractio	n Date/tir	me: _		
Analytical Run #:	137160		Analysis D	ate/Time	04/3	25/2017	08:00	_
Analytical Prep Batch #:			Prep. Date	e/Time:				
ICAL Calibration #:			Concentra	tion Units:	%			
CAS #	Analyte	Concentratio	n Qua	lifiers	DL	LOD	LOQ	R
SOLID Solid	s. Percent	86.7	-	1.0	0.1	0.1	0.1	0.

Sample Description

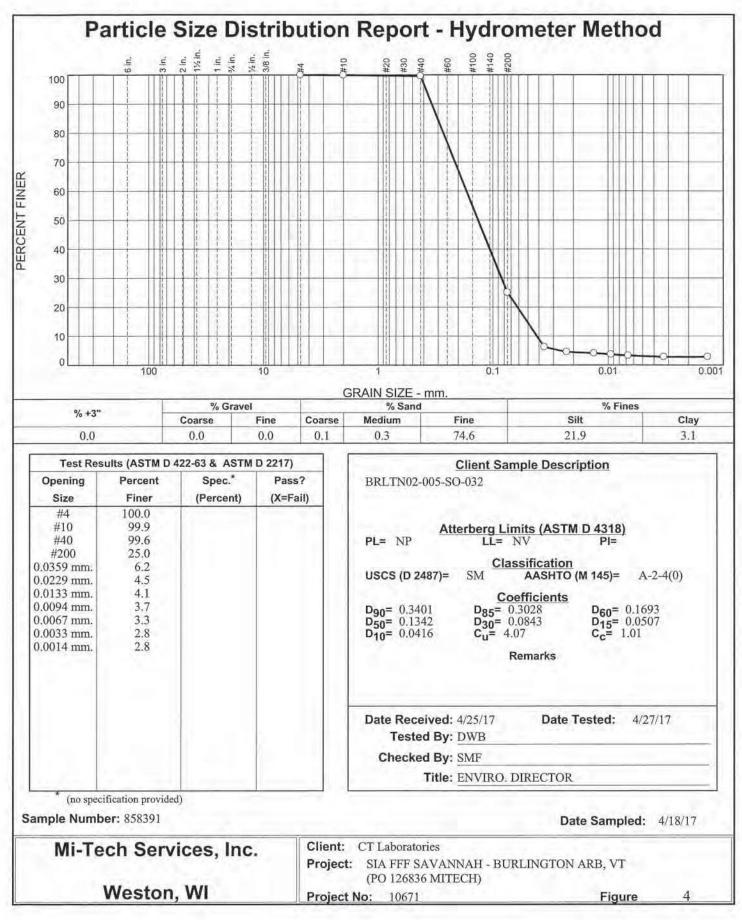
1 INORGANIC ANALYSIS DATA SHEET

BRLTN02-005-SS-001

Lab Name:	CT Laboratories		Contract: MAXXAM	ANALYTIC	S-SIA FFF S	SAVANNAH	11.1
Matrix (soil/water):	SOIL		SDG No.:	126836	3		
% Solids:	65.5		Lab Sample ID:	858390			
Analytical Method:			Date Received:	2017			
Dilution Factor.			TCLP/SPLP Extraction Date/time:				
Analytical Run #.	137280		Analysis Date/Time	04/2	28/2017	13:40	
Analytical Prep Batch #			Prep. Date/Time:				
ICAL Calibration #:	INSTRUMENT =		Concentration Units:	mg	/kg		
CAS #	Analyte	Concentratio	n Qualifiers	DL	LOD	LOQ	RL
TOC To	otal Organic Carbon	25600		55	110	230	230

Sample Description

1 INORGANIC ANALYSIS DATA SHEET BRLTN02-005-SS-001


Lab Name:	CT Laboratories	C	Contract: MAXXAM	ANALYTIC	S-SIA FFF	SAVANNAH	
Matrix (soil/water):	SOIL	S	DG No.:	126836	3		
% Solids:	65.5 Lab Sample IE		ab Sample ID:	858390 04/22/2017			
Analytical Method: EPA 9045D Dilution Factor: 1		D	ate Received:				
		1	_ TCLP/SPLP Extraction Date/time:				
Analytical Run #:	137341	A	nalysis Date/Time	04/2	28/2017	13:15	
Analytical Prep Batch	#:	F	rep. Date/Time:				
ICAL Calibration #:		0	Concentration Units:	S.U).		
CAS #	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL
PH I	pH	7.17		0.1	0.1	0.1	0.1

Sample Description

1 INORGANIC ANALYSIS DATA SHEET

BRLTN02-005-SS-001

Lab Name:	CT Laboratories		Contract: MAXXAM	ANALYTIC	S-SIA FFF	SAVANNAH		
Matrix (soil/water):	SOIL	5	DG No .:	126836	6	-		
% Solids:	65.5		ab Sample ID:	858390				
Analytical Method:	lytical Method: EPA 8000C		Date Received:	04/22/2017				
Dilution Factor.	1.00	1.00		_ TCLP/SPLP Extraction Date/time:				
Analytical Run #:	137160		Analysis Date/Time	04/	25/2017	08:00		
Analytical Prep Batch	#:		Prep. Date/Time:			3.5		
ICAL Calibration #:	1. <u>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</u>		Concentration Units:	%	- 53	-		
CAS #	Analyte	Concentration	n Qualifiers	DL	LOD	LOQ	RL	
SOLID	Solids, Percent	65.5	-	0.1	0,1	0,1	0.1	

Sample Description

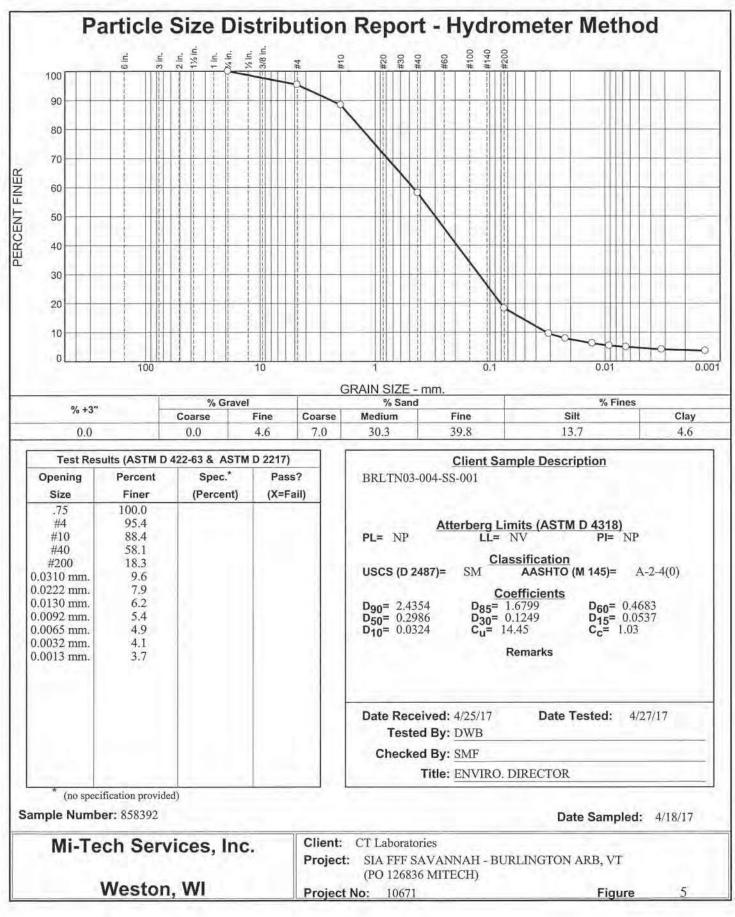
1 INORGANIC ANALYSIS DATA SHEET

BRLTN02-005-SO-032

Lab Name:	CT Laboratories		Contract: MAXXAM	ANALYTIC	S-SIA FFF	SAVANNAH	
Matrix (soil/water):	SOIL		SDG No.:	126836	5		
% Solids:	88.1	88.1 Lab San		858391			
		Date Received:	04/22/2017				
		_ TCLP/SPLP Extraction Date/time:					
Analytical Run #:	137280		Analysis Date/Time	04/	28/2017	13:46	
Analytical Prep Batch #:			Prep. Date/Time:	-			
ICAL Calibration #:	INSTRUMENT =		Concentration Units:	mg	/kg		
CAS #	Analyte	Concentration	n Qualifiers	DL	LOD	LOQ	RL
TOC To	tal Organic Carbon	331		41	85	170	170

Sample Description

1 INORGANIC ANALYSIS DATA SHEET BRLTN02-005-SO-032


Lab Name:	CT Laboratories		Contract: MAXXAM A	ANALYTIC	S-SIA FFF	SAVANNAH			
Matrix (soil/water):	SOIL		SDG No.:	126836	6				
% Solids:	EPA 9045D Dat		Lab Sample ID:	858391					
Analytical Method:			EPA 9045D Date Received:		Date Received:	04/22/2017			
Dilution Factor:			TCLP/SPLP Extraction Date/time:						
Analytical Run #:	137341		Analysis Date/Time	04/:	28/2017	13:15			
Analytical Prep Batch #:	· · · · · · · · · · · · · · · · · · ·		Prep. Date/Time:	100					
ICAL Calibration #:			Concentration Units:	S.U	l.				
CAS #	Analyte	Concentratio	n Qualifiers	DL	LOD	LOQ	RL		
РН рН		7.49		0.1	0.1	0.1	0.1		

Sample Description

		1		
INC	RGANIC A	NALYSIS	DATA	SHEET

BRLTN02-005-SO-032

Lab Name:	CT Laboratories		Contract: MAXXAM	ANALYTIC	S-SIA FFF	SAVANNAH	
Matrix (soil/water);	SOIL		SDG No.:	126836	5		
% Solids:	88.1		Lab Sample ID:	858391	<u></u>		
Analytical Method:			Date Received:	04/22/2017			
Dilution Factor:			_ TCLP/SPLP Extraction Date/time:				
Analytical Run #:	137160		Analysis Date/Time	04/2	25/2017	08:00	
Analytical Prep Batch #:			Prep. Date/Time:				
ICAL Calibration #:			Concentration Units:	%			
CAS #	Analyte	Concentratio	n Qualifiers	DL	LOD	LOQ	RL
SOLID Soli	ds, Percent	88.1		0.1	0.1	0.1	0.1

Sample Description

1
INORGANIC ANALYSIS DATA SHEET

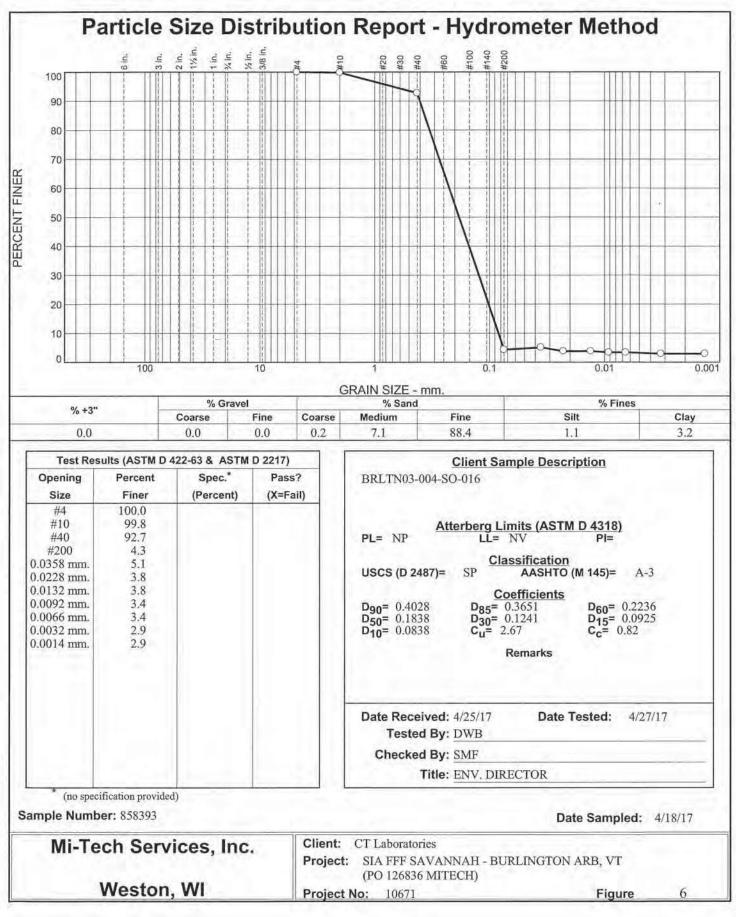
BRLTN03-004-SS-001

Lab Name:	CT Laboratories	C	ontract: MAXXAM	ANALYTIC	S-SIA FFF	SAVANNAH	
Matrix (soil/water):	SOIL	S	DG No .:	126836	3		
% Solids:	91.9	91.9 Lab Sample I L-Kahn/9060A Date Receive 1.00 TCLP/SPLP I		858392 04/22/2017			
Analytical Method:	L-Kahn/9060A						
Dilution Factor:	.1.00			on Date/ti	me: _		
Analytical Run #:	137280	A	nalysis Date/Time	04/	28/2017	13:54	
Analytical Prep Batch #	¥:	P	rep. Date/Time:				
ICAL Calibration #:	INSTRUMENT =	C	oncentration Units:	mg	/kg		
CAS #	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL
тос т	otal Organic Carbon	2940		39	82	160	160

Sample Description

1 INORGANIC ANALYSIS DATA SHEET

BRLTN03-004-SS-001


Lab Name:	CT Laboratories	Contract: MAX	XAM ANALYTIC	S-SIA FFF	SAVANNAH		
Matrix (soil/water):	SOIL	SDG No.:	126836	3			
% Solids:	91.9	Lab Sample ID:	858393	858392			
Analytical Method: EPA 9045D Dilution Factor:		Date Received:	04/22/2	04/22/2017			
		TCLP/SPLP Ex	TCLP/SPLP Extraction Date/time:				
Analytical Run #:	137341	Analysis Date/1	ime 04/	28/2017	13:15		
Analytical Prep Batc	h #:	Prep. Date/Tim	e:	- 1			
ICAL Calibration #:	-	Concentration	Jnits: S.L	J.			
CAS #	Analyte	Concentration Qualifier	s DL	LOD	LOQ	RL	
РН	pH	7.26	0.1	0.1	.0.1	0.1	

Sample Description

1 INORGANIC ANALYSIS DATA SHEET

BRLTN03-004-SS-001

Lab Name:	CT Laboratories		Contract: MAXXAM	ANALYTIC	S-SIA FFF	SAVANNAH	
Matrix (soil/water):	SOIL		SDG No .:	126836	5		-
% Solids:	91.9	<u>91.9</u> L		858392 04/22/2017			
Analytical Method:			Date Received:				
Dilution Factor:			TCLP/SPLP Extraction Date/time:				
Analytical Run #:	137160		Analysis Date/Time	04/:	25/2017	08:00	
Analytical Prep Batch #		I	Prep. Date/Time:				
ICAL Calibration #:			Concentration Units:	%			
CAS #	Analyte	Concentration	n Qualifiers	DL	LOD	LOQ	RL
SOLID So	olids, Percent	91.9		0.1	0.1	0.1	0.1

Sample Description

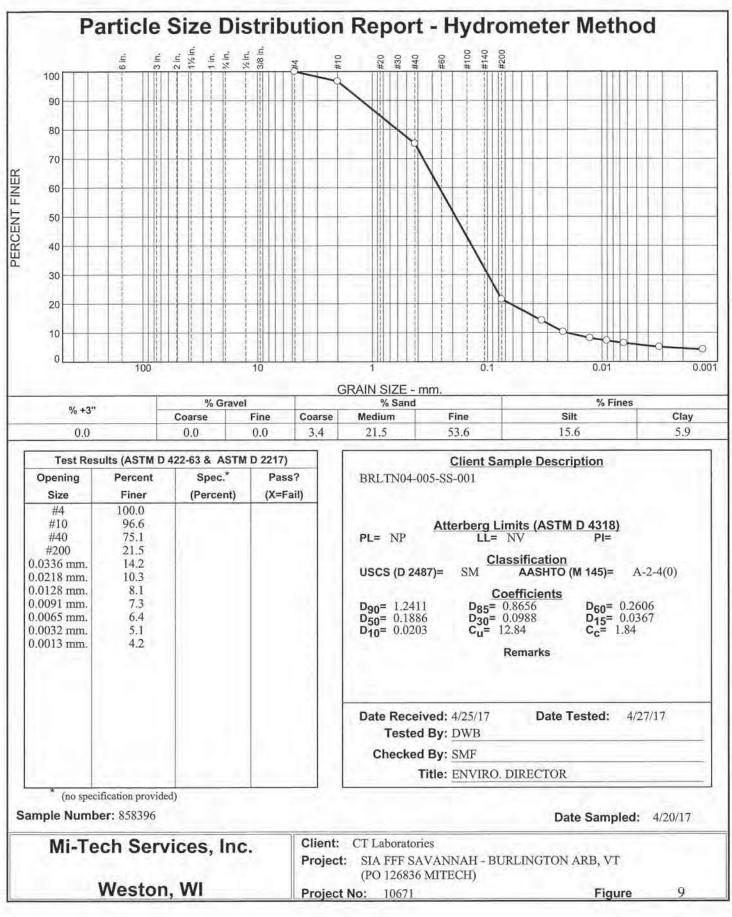
1 INORGANIC ANALYSIS DATA SHEET BRLTN03-004-SO-016

Lab Name:	CT Laboratories	Contract	MAXXAM ANALYTIC	CS-SIA FFF	SAVANNAH			
Matrix (soil/water):	SOIL	SDG No	12683	6				
% Solids:	86.2	Lab Sam	nple ID: 85839	858393				
		Date Re	ceived: 04/22/	04/22/2017				
		TCLP/SI	_ TCLP/SPLP Extraction Date/time:					
Analytical Run #:	137280	Analysis	Date/Time 04/	28/2017	15:19			
Analytical Prep Batch #		Prep. Da	ate/Time:					
ICAL Calibration #:	INSTRUMENT =	Concent	ration Units: mg	/kg				
CAS #	Analyte	Concentration Q	ualifiers DL	LOD	LOQ	RL		
TOC To	tal Organic Carbon	316	42	87	170	170		

Sample Description

1	
INORGANIC ANALYSIS DATA SHEET	

BRLTN03-004-SO-016


Lab Name:	CT Laboratories	Cor	tract: MAXXAM	ANALYTIC	S-SIA FFF	SAVANNAH	
Matrix (soil/water):	SOIL	SD	G No.:	126836	6		_
% Solids:	86.2	Lab	Sample ID:	858393	3		
Analytical Method:	EPA 9045D	Dat	e Received:	04/22/2	2017		
Dilution Factor:	1	TCI	CLP/SPLP Extraction Date/time:				
Analytical Run #:	137341	Ana	Ilysis Date/Time	04/	28/2017	13:15	
Analytical Prep Batch	n#:	Pre	p. Date/Time:		-		
ICAL Calibration #:		Cor	centration Units:	S.U	J.		
CAS #	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL
РН	pН	7.48		0.1	0.1	0.1	0.1

Sample Description

1 INORGANIC ANALYSIS DATA SHEET

BRLTN03-004-SO-016

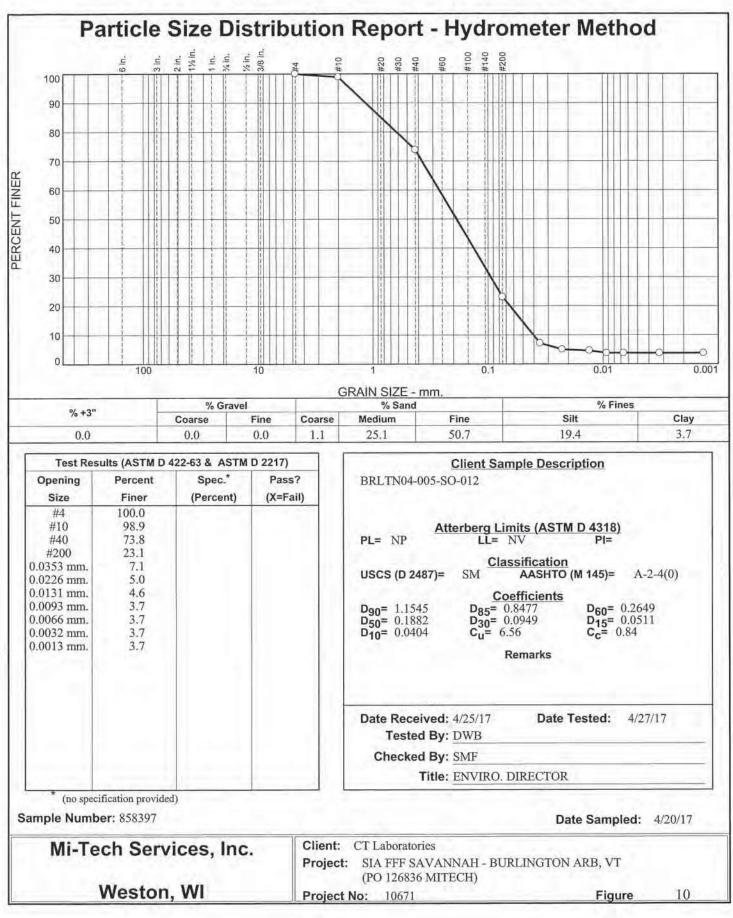
Lab Name:	CT Laboratories	C	ontract: MAXXAM	ANALYTIC	S-SIA FFF	SAVANNAH			
Matrix (soil/water):	SOIL	S	DG No.:	126836	6				
% Solids:	86.2	86.2		86.2 Lab Sample ID:		858393			
Analytical Method:	EPA 8000C	EPA 8000C		04/22/2017					
Dilution Factor:	1.00	T	CLP/SPLP Extractio	n Date/ti	me: _				
Analytical Run #:	137160	A	nalysis Date/Time	04/2	25/2017	08:00			
Analytical Prep Batc	h #:	P	rep. Date/Time:						
ICAL Calibration #:		c	oncentration Units:	%	10.00		-		
CAS #	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL		
SOLID	Solids, Percent	86.2		0.1	0.1	0.1	0.1		

Sample Description

1 INORGANIC ANALYSIS DATA SHEET BRLTN04-005-SS-001

Lab Name:	CT Laboratories		Contract: MAXXAM	ANALYTIC	S-SIA FFF	SAVANNAH	
Matrix (soil/water):	SOIL		SDG No .:	126836	5		
% Solids:	81.4		Lab Sample ID:	858396	6	_	
Analytical Method:	L-Kahn/9060A D		Date Received:	04/22/2017			
Dilution Factor:	_1.00T		TCLP/SPLP Extractio	n Date/ti	me:		
Analytical Run #:	137280	- 27	Analysis Date/Time	04/2	28/2017	14:22	
Analytical Prep Batch #:			Prep. Date/Time:				
ICAL Calibration #:	INSTRUMENT =		Concentration Units:	mg/	/kg		
CAS #	Analyte	Concentratio	n Qualifiers	DL	LOD	LOQ	RL
TOC Tot	al Organic Carbon	5160		44	92	180	180

Sample Description


1 INORGANIC ANALYSIS DATA SHEET BRLTN04-005-SS-001

Lab Name:	CT Laboratories		Contract: MAXXAM	ANALYTIC	S-SIA FFF	SAVANNAH	
Matrix (soil/water):	SOIL		SDG No.:	126836	5	_	
% Solids:	81.4	1	ab Sample ID:	858396	6	-	
Analytical Method:	EPA 9045D	(Date Received:	04/22/2	2017		_
Dilution Factor:	.1	1	CLP/SPLP Extractio	n Date/ti	me:	-	
Analytical Run #:	137341		Analysis Date/Time	04/	28/2017	13:15	
Analytical Prep Batch #	ŧ:		Prep. Date/Time:			1.2	
ICAL Calibration #:			Concentration Units:	S.U	L.		
CAS #	Analyte	Concentration	n Qualifiers	DL	LOD	LOQ	RL
РН р	н	7.44		0.1	0.1	0.1	0.1

Sample Description

1 INORGANIC ANALYSIS DATA SHEET BRLTN04-005-SS-001

Lab Name:	CT Laboratories		Contract: MAXXAM	NALYTIC	S-SIA FFF	SAVANNAH	_
Matrix (soil/water):	SOIL		SDG No .:	126836	3		
% Solids:	81.4		Lab Sample ID:	858396	5	_	
Analytical Method:	EPA 8000C		Date Received:	04/22/2	2017	-	
Dilution Factor.	_1.00		TCLP/SPLP Extractio	n Date/tir	me:		
Analytical Run #:	137160		Analysis Date/Time	04/2	25/2017	08:00	
Analytical Prep Batch #:			Prep. Date/Time:				
CAL Calibration #:			Concentration Units:	%		- 10 C	
CAS #	Analyte	Concentratio	on Qualifiers	DL	LOD	LOQ	RL
SOLID Sol	ds, Percent	81.4		0.1	0.1	0.1	0.1

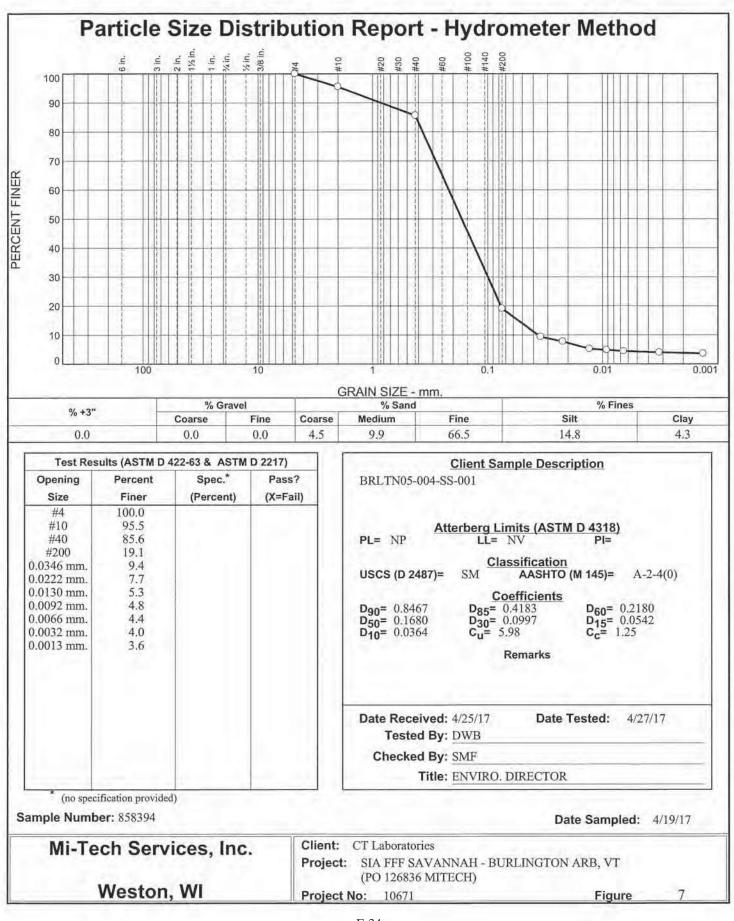
Sample Description

1 INORGANIC ANALYSIS DATA SHEET BRLTN04-005-SO-012

Lab Name:	CT Laboratories	c	ontract:	MAXXAM	NALYTIC	S-SIA FFF	SAVANNAH	
Matrix (soil/water):	SOIL	S	DG No.:		126836	3		
% Solids:	89.0 L		ab Sampl	e ID:	858397			
Analytical Method:	L-Kahn/9060A C		ate Rece	ived:	04/22/2017			
Dilution Factor:	.1.00		CLP/SPL	P Extractio	n Date/ti	me:		
Analytical Run #:	137280	А	nalysis D	ate/Time	04/2	28/2017	15:08	
Analytical Prep Batch #	ŧ	P	rep. Date	/Time:				
ICAL Calibration #:	INSTRUMENT =	c	oncentral	tion Units:	mg/	kg		
CAS #	Analyte	Concentration	Qua	lifiers	DL	LOD	LOQ	RL
TOC To	otal Organic Carbon	484			40	84	170	170

Sample Description

1 INORGANIC ANALYSIS DATA SHEET BRLTN04-005-SO-012


Lab Name:	CT Laboratories		Contract: MAXXAM A	NALYTIC	S-SIA FFF	SAVANNAH	_
Matrix (soil/water):	SOIL		SDG No.:	126836	5		
% Solids:	89.0		Lab Sample ID:	858397	7	_	
Analytical Method:	EPA 9045D		Date Received:	04/22/2	2017		
Dilution Factor:	.1		TCLP/SPLP Extractio	n Date/tii	me: _		_
Analytical Run #:	137341		Analysis Date/Time	04/2	28/2017	13:15	
Analytical Prep Batch #:			Prep. Date/Time:				
ICAL Calibration #:			Concentration Units:	S.U	l.		
CAS #	Analyte	Concentratio	on Qualifiers	DL	LOD	LOQ	RL
PH pH		7.67		0.1	0.1	0.1	0.1

Sample Description

1 INORGANIC ANALYSIS DATA SHEET

BRLTN04-005-SO-012

Lab Name:	CT Laboratories		Contract: MAXXAM	NALYTIC	S-SIA FFF	SAVANNAH	
Matrix (soil/water):	SOIL		SDG No .:	126836	5		
% Solids:	89.0		Lab Sample ID:	858397	7		
Analytical Method:	EPA 8000C		Date Received:	04/22/2	2017		
Dilution Factor:	1.00		TCLP/SPLP Extractio	n Date/tii	me:	-	
Analytical Run #:	137160	-	Analysis Date/Time	04/2	25/2017	08:00	
Analytical Prep Batch #:			Prep. Date/Time:				
ICAL Calibration #:	S		Concentration Units:	%			_
CAS #	Analyte	Concentratio	on Qualifiers	DL	LOD	LOQ	RL
SOLID Solids	s, Percent	89.0		0.1	0.1	0.1	0.1

Sample Description

	1
INORGANIC ANAL	YSIS DATA SHEET

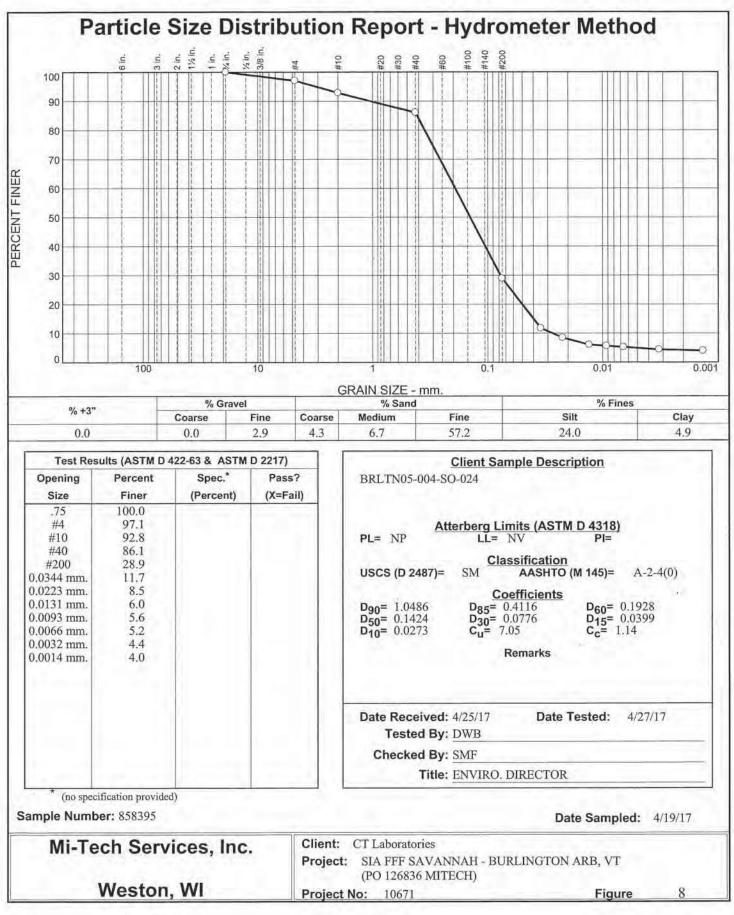
BRLTN05-004-SS-001

Lab Name:	CT Laboratories	C	ontract: MAXXAN	ANALYTIC	S-SIA FFF	SAVANNAH	
Matrix (soil/water):	SOIL	S	DG No.:	12683	3		
% Solids:	75.5	L	ab Sample ID:	858394	4		
Analytical Method:	L-Kahn/9060A	D	ate Received:	04/22/2	2017		
Dilution Factor:	1.00		CLP/SPLP Extract	ion Date/ti	me: _		_
Analytical Run #:	137280	A	nalysis Date/Time	04/	28/2017	14:07	
Analytical Prep Batch	#:	P	rep. Date/Time:				
ICAL Calibration #:	INSTRUMENT =	C	oncentration Units	: mg	/kg		
CAS #	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL
тос	Fotal Organic Carbon	983		48	99	200	200

Sample Description

	1
INORGANIC ANA	LYSIS DATA SHEET

BRLTN05-004-SS-001


Lab Name:	CT Laboratories	c	ontract: MAXXAI	ANALYTIC	S-SIA FFF	SAVANNAH	
Matrix (soil/water):	SOIL	S	DG No.:	126836	3		_
% Solids:	75.5	La	ab Sample ID:	858394	1		
Analytical Method:	EPA 9045D	D	ate Received;	04/22/2	2017		_
Dilution Factor:	1	T	CLP/SPLP Extrac	tion Date/ti	me:		_
Analytical Run #:	137341	A	nalysis Date/Time	04/	28/2017	13:15	
Analytical Prep Batch	#:	P	rep. Date/Time:				
ICAL Calibration #:		c	oncentration Units	s: S.L	l.		
CAS #	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL
РН	ЪН	7.29		0.1	0.1	0.1	0.1

Sample Description

1 INORGANIC ANALYSIS DATA SHEET services = = = = i kiter

BRLTN05-004-SS-001

Lab Name:	CT Laboratories	Co	ontract: MAXXAM	ANALYTIC	CS-SIA FFF	SAVANNAH	
Matrix (soil/water):	SOIL	SE	OG No.:	126836	6		
% Solids:	75.5	La	b Sample ID:	858394	4		
Analytical Method:	EPA 8000C	Da	te Received:	04/22/2	2017		
Dilution Factor:	1.00	тс	LP/SPLP Extraction	on Date/ti	me: _		
Analytical Run #:	137160	Ar	alysis Date/Time	04/	25/2017	08:00	
Analytical Prep Bate	ch #:	Pr	ep. Date/Time:			-	
ICAL Calibration #:		Co	ncentration Units:	%			
CAS#	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL
SOLID	Solids, Percent	75,5	10-11 A	0.1	0.1	0.1	0.1

Sample Description

1 INORGANIC ANALYSIS DATA SHEET

BRLTN05-004-SO-024

Lab Name:	CT Laboratories	0	Contract: MAXXAM	ANALYTIC	S-SIA FFF	SAVANNAH	
Matrix (soil/water):	SOIL	S	DG No .:	126836	5		
% Solids:	85.4	1	ab Sample ID:	858395	5		
Analytical Method:	L-Kahn/9060A	C	Date Received:	04/22/2	2017		
Dilution Factor:	_1.00		CLP/SPLP Extraction	n Date/ti	me:		
Analytical Run #:	137280	A	Analysis Date/Time	04/2	28/2017	14:15	
Analytical Prep Batch #	6	F	Prep. Date/Time:				
ICAL Calibration #:	INSTRUMENT =	0	Concentration Units:	mg	/kg		
CAS #	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL
TOC To	otal Organic Carbon	434		42	88	180	180

Sample Description

1 INORGANIC ANALYSIS DATA SHEET

BRLTN05-004-SO-024

Matrix (soil/water): % Solids:	<u>SOIL</u> 85.4	la	b Sample ID:	126836 858395			
Analytical Method:	EPA 9045D		te Received:	04/22/2	100		
Dilution Factor:	_1	тс	LP/SPLP Extraction	on Date/tir	me: _		
Analytical Run #:	137341	Ar	alysis Date/Time	04/2	28/2017	13:15	
Analytical Prep Batc	h #:	Pr	rep. Date/Time:				
ICAL Calibration #:		Co	ncentration Units:	S.U	ŧ.		
CAS #	Analyte	Concentration	Qualifiers	DL	LOD	LOQ	RL
PH	pH	7,48		0.1	0.1	0.1	0.1

Sample Description

1 INORGANIC ANALYSIS DATA SHEET

BRLTN05-004-SO-024

Lab Name:	CT Laboratories		Contract: MAXXA	MANALYTIC	S-SIA FFF	SAVANNAH	
Matrix (soil/water):	SOIL		SDG No .:	12683	6		_
% Solids:	85.4		Lab Sample ID:	85839	5		-
Analytical Method:	EPA 8000C		Date Received:	04/22/2	2017		
Dilution Factor:	_1.00		TCLP/SPLP Extrac	tion Date/ti	me:		
Analytical Run #:	137160		Analysis Date/Time	04/	25/2017	08:00	
Analytical Prep Batch #:	1.		Prep. Date/Time:				-
ICAL Calibration #:			Concentration Units	5: %	1.		
CAS #	Analyte	Concentratio	n Qualifiers	DL	LOD	LOQ	RL
SOLID Solid	is, Percent	85.4		0.1	0.1	0.1	0.1

Appendix G

Groundwater Level Measurements and Elevations

April 21, 2017
d Elevations -
Aeasurements and I
Level N
Groundwater
le G-1
Tabl

						Ground Surface	Top of Casing	Depth to Water	Groundwater Elevation ³
					Total	Elevation ³	Elevation ^{2,3}	4/21/17	4/21/17
AFFF Area	Well ID	Well Type	Northing ^{1,2}	Easting	Depth	(ft)	(ft)	(ft)	(ft)
	V1-BP-2	Permanent	721641.74	1470494.14	14.2	Not Available	313.97	8.67	305.30
	V1-BP-3	Permanent	721645.72	1470587.06	13.94	Not Available	319.09	11.10	307.99
	V1-MW-102	Permanent	721851.15	1471577.07	11	Not Available	256.19	6.82	249.37
AFFF Area 1	V1-MW-103	Permanent	721948.28	1471188.86	13.89	Not Available	263.90	3.07	260.83
FTA 1	V1-MW-13L	Permanent	721911.49	1471098.15	22.81	Not Available	268.38	8.00	260.38
	V1-MW-14L	Permanent	721970.10	1471168.59	10.3	Not Available	262.31	3.76	258.55
	V1-MW-2	Permanent	721604.43	1470425.86	19.75	Not Available	314.26	8.77	305.49
	V1-MW-4	Permanent	721731.14	1470840.35	26.96	Not Available	312.02	18.95	293.07
AFFF Area 2 Building 00	BRLTN02-001	Temporary	720614.44	1470801.08	30.0	326.01	328.41	25.05	303.36
Former Fire	BRLTN02-002	Temporary	720700.71	1470910.10	30.0	324.92	327.43	27.43	300.00
Station	BRLTN02-003	Temporary	720633.94	1470962.30	35.0	325.28	327.95	29.29	298.66
AFFF Area 3 Building 60	BRLTN03-001	Temporary	721023.55	1470428.44	25.0	324.45	327.40	18.87	308.53
Current Fire Station	BRLTN03-002	Temporary	721050.72	1470450.06	25.0	323.78	326.60	18.35	308.25
¹ Vermont State Pla	Vermont State Plane North America Datum 1983	um 1983	5 - 1 - E	- M HM - :					

²Coordinates and top of casing elevations for Area 1 wells taken from Table 4-1 Synoptic WL Measurements and Elevations, Final RI Report - Sites 1, 2, 3, 4, 5A, and 5B, 158th Fighter Wing, VANG, Burlington Air National Guard Base, South Burlington, Vermont, CH2MHill March 2010. ³North American Vertical Datum 1988 AFFF = aqueous film forming foam FTA = fire training area MW = monitoring well

G-1